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ABSTRACT 

In this paper it is examined how writing specialized 

codes within the OpenFOAM software framework is 

applicable to problems involving hydrothermal 

systems. This is done with two case studies. In the 

first one, the continuity of mildly compressible flow 

is stabilized using Fréchet derivatives, enabling the 

use of very large time steps or treating it as steady 

state. The second one involves the phase change of 

water, due to sudden drop in pressure at the top of a 

water column. The physical properties are determined 

from the IAPWS-IF97 thermodynamic formulation, 

which is directly compiled into OpenFOAM. It is 

also demonstrated how the software framework is 

able to handle the numerical instabilities that are 

caused by the discontinuities in physical properties in 

the phase change region. Both cases demonstrate how 

the modular nature of the OpenFOAM can be utilized 

to solve specialized problems involving hydrothermal 

systems and are validated by analytical solutions.  

INTRODUCTION 

Numerical simulation of hydrothermal systems has 

played an important role in the modeling of 

geothermal reservoirs for the past decades. For 

researchers it has been used to test competing 

hypothesis in these complex data-poor environments 

and in industry numerical simulation has become 

standard practice in the planning and management of 

the development of geothermal fields [O’Sullivan, 

2001]. 

 

The earliest efforts to apply numerical models to 

geothermal reservoirs were made in the early 1970's, 

while the usefulness of numerical modelling did not 

begin to gain acceptance by the geothermal industry 

until after the 1980 Code Comparison Study 

[Stanford Geothermal Program, 1980]. Since that 

study was performed, the experiences gained in 

carrying out site-specific studies as well as generic 

reservoir modeling studies have led to a constant 

improvement in the capabilities of numerical 

reservoir models. 

 

Numerical modeling of hydrothermal systems is 

often defined by which components of the system are 

taken into account. Traditionally they have been 

divided into hydrological (H), thermal (T), 

mechanical (M) and chemical (C). Those components 

are coupled together in a way that is inherently 

multiscale in nature, such that their temporal and 

spatial scales vary be several orders of magnitude 

[Ingebritsen et al., 2010]. Because of the complex 

nature of those couplings, models involving all four 

components are rare. 

 

The equations that describe hydrothermal systems are 

sufficiently complex so that they can only be solved 

analytically, for a highly idealized set of initial and 

boundary conditions. Such cases usually only involve 

one of the four (HTMC) components, where the 

Theis problem is an example thereof [Theis, 1935]. 

Some analytical solutions also exists for two 

components, such as the description of a boiling front 

moving through a porous medium [Pruess and 

Celatis, 1987] and the advance of a diffused salt 

water wedge in a confined aquifer [Henry, 1964]. 

These analytical solutions are very important in 

validating numerical models that are supposed to 

handle more complicated problems. 

 

In order to model realistic hydrothermal systems, 

numerical models are needed. The current generation 

of numerical simulators is able to account for multi-

phase, multi-component flow. The most versatile are 

software packages such as Finite Element Heat and 

Mass Transfer (FEHM) [Keating et al., 2002] and the 

Transport of Unsaturated Groundwater and Heat 

(TOUGH) family of codes [Pruess, 1991]. These 

solvers have been applied to a wide variety of 

problems, such as CO2 sequestration, geothermal 

studies and other environmental issues [Ingebritsen et 

al., 2010]. 

 

Other solvers are more specialized, such as the 

Complex Systems Modeling Platform (CSMP++) 



[Matthäi et al., 2007] and Fully Implicit Seafloor 

Hydrothermal Event Simulator (FISHES) [Lewis and 

Lowell, 2009]. They have been developed 

specifically to allow simulation of high-temperature 

multiphase flow of NaCl-H2O fluids. Other codes 

such as FALCON [Podgorney et al., 2011], 

developed at Idaho National Labs have focused on 

the tightly coupled process of fluid-rock interaction. 

 

In this paper the applicability of using a free and 

open source package named OpenFOAM, in the 

modeling of hydrothermal systems is examined. 

OpenFOAM is a highly customizable set of C++ 

libraries and tools for the solution of problems in 

continuum mechanics. OpenFOAM is gaining 

considerable popularity in academic research and 

among industrial users, both as a research platform 

and a black-box CFD [Jasak et al., 2007]. 

 

The object orientation and operator overloading of 

C++ has enabled the developers of OpenFOAM to 

build a framework for computational fluid dynamics 

that enables modelers to work at a very high level of 

abstraction [Weller et al., 1998]. This makes it 

possible to manipulate the set of partial differential 

equations that describe the problem and customize 

the solver itself for each class of cases that need to be 

solved. This will enable researchers with sufficient 

knowledge about the relevant dynamics of each 

problem to construct efficient and accurate solvers 

for it. This is the main motivation for using 

OpenFOAM, rather than currently existing models. 

 

Since the source code of OpenFOAM is open and 

freely available, new codes can easily be compiled 

into the libraries. In this article the IAPWS-IF97 

thermodynamic formulation has been implemented in 

C++ and compiled directly into the code. This allows 

for considerable improvements in speed and 

accuracy, where the IAPWS-IF97 is more than five 

times faster than the older IFC-67 [IAPWS, 2010]. 

 

As well as showing how easily an equation of state 

can be implemented in the previously existing 

framework, this paper also shows how the underlying 

equations can be modified in an easy way. This is 

demonstrated by linearizing the partial differential 

equations describing the hydrology of the problem 

using Fréchet derivatives. In this manner it is possible 

to stabilize the solution for superheated steam, which 

makes it possible to treat the pressure equation as 

steady state, allowing for a more computationally 

efficient solution. 

 

 

THEORY 

Governing equations 

 

For mass conservation the continuity equation must 

be satisfied 

 

 
 

where φ is porosity and ρ is density. In this equation 

u denotes the superficial velocity, which is a 

hypothetical velocity calculated as if the fluid were 

the only thing present in a given cross sectional area. 

Both phases are also assumed to travel at the same 

velocity. For pressure-velocity coupling, Darcy's law 

can be applied 

 

 
 

where κ is permeability, μ is viscosity and g is 

gravitational acceleration. This gives following 

equation for groundwater flow 

 

        
 

The energy equation includes both effects from the 

fluid and the soil, and is given as 

 

     
 

where ρs is the density of soil, cs is the heat capacity 

of soil and Γ is the combined conductivity of fluid 

and soil. If the properties of the soil are assumed to 

be constant the laplacian of temperature can be 

broken up in terms of enthalpy and pressure. If the 

chain rule is also applied to the time derivative of 

temperature, this equation finally becomes 

 

 

Stabilizing the pressure equation 

 

Since the density is a strong function of pressure in 

the liquid-vapor phase, it can be accounted for in the 

time derivative by using a first order Taylor 

expansion. If it is also assumed that the porosity is 

not a function of time, the Taylor expansion of the 

time derivative becomes 



 

         
 

The stability of the pressure equation can be 

increased by linearizing the laplacian term. This is 

possible by applying a Fréchet derative operator on 

the term, such that 

 

 
 

this can then be applied to a first order Taylor 

expansion of the function 

 

 
 

Having applied both the Taylor expansion of the time 

derivative and the linearization of the laplacian term, 

the pressure equation becomes 

 

   
 

Analytical solution to the groundwater flow 

equation 

The numerical solution of this problem is then 

compared to the Theis solution [Theis, 1935], which 

has the same geometry and governing equations as 

this problem, but constant physical properties. It is 

derived from the groundwater equation 

 

 
 

where S is the storativity of the aquifer and k is the 

hydraulic conductivity. These variables can be 

denoted in terms of the variables that are used in the 

numerical problem, which gives 

 

 
 

If the physical properties are approximated to be 

constant this equation becomes 

 

 
 

By applying the similarity transform 

 

 
 

a solution for the drawdown, s = (p0 - p)/(ρ0g) can be 

obtained, such that 

 

 
 

where E1(u)=-Ei(-u) and Ei is the exponential 

integral. 

 

The IAPWS-IF97 thermodynamic formulation 

 

The IFC-67 thermodynamic formulation has now 

been superseded by the IAPWS-97 formulation. Its 

current revision consists of a set of equations which 

cover the following range of validity 

 

 
 

where the thermodynamic properties are more 

accurate than in IFC-67. The algorithm is also more 

than five times faster than IFC-67 except in the 

supercritical region where it is approximately three 

times faster [IAPWS, 2010] 

 

The C++ implementation of IAPWS-IF97 was 

retrieved from the freesteam project.  The primary 

variables were taken to be pressure and enthalpy, 

since pressure-temperature formulation has been 

shown to have more difficulties close to the critical 

point [Ingebritsen et al., 2010]. Given those two state 

variables the algorithm returns the steam quality x, 

the density ρ, the temperature T and the partial 

derivatives of all those variables both with respect to 

pressure and enthalpy. Those values are then used in 

the system equations, which makes it possible to 

solve for each time step. 

 

CASE STUDIES 

Axisymmetric well 

 

In this case the problem is set up similar to the Theis 

problem with a one dimensional axisymmetric mesh. 



The main difference is that in this case IAPWS-IF97 

is used for an equation of state. In this case the fluid 

is assumed to have a constant enthalpy of 2900 kJ/kg, 

which for the pressures considered in this case gives 

superheated steam. 

 

 
Figure 1:  The mesh of the axissymmetric well. 

 

The well is assumed to have a radius of 10cm, and 

the reservoir is assumed to extend 1 km out from it. 

In OpenFOAM axisymmetry can be defined by a 

block, where the two opposing sides normal to the 

tangential direction are defined with an axisymmetric 

boundary condition, while the sides normal to the 

radial direction have the boundary conditions as 

defined by the problem. The length of the arc in this 

mesh is set to 5°, while in the radial direction the 

mesh is divided into 1000 mesh blocks with a cell 

expansion ratio of 20. 

 

The Neumann boundary condition at the well is 

assumed to be 

 

 
 

where Q is the volume flow rate from the well. At the 

r1 = 1km boundary, the pressure is defined as a 

Dirichlet boundary condition, such that 

 

 
 

Two cases are to be considered, one which where the 

density and viscosity are almost linear, and another 

one where they are highly non-linear. The linear case 

is used to validate the numerical solution with the 

Theis solution, which assumes constant physical 

properties. This case has the following parameters 

 

 
 

The second case should show the ability of the model 

to go beyond the Theis solution, with highly non-

linear physical properties. In that case they are given 

as follows 

 

 

 

Phase change 

 

The second case for validation uses both the energy 

and the pressure equation. The problem is defined as 

a 10 m high one dimensional water column, with 

initial enthalpy of 400 kJ/kg. The initial pressure 

increases hydrostatically in the vertical direction 

from 8.61·10
4
 Pa at the top, but at t = 0 s the pressure 

is dropped to 7.6 · 10
4
 Pa. 

 

The mesh in this problem is divided evenly into 1000 

blocks. In this case both the linearized pressure 

equation and the energy equation are solved, in a 

segregated manner.  

 

        
Figure 2: The geometry and the initial conditions 

of the water column. 

 

RESULTS 

 
Figure 3: The maximum time step giving a stable 

solution as a function of the Neumann boundary 

condition at the well. 

 

Figure 3 shows the maximum time step where the 

non-linearized equation gives a stable solution, as a 



function of the Neumann boundary condition at the 

well. The figure shows clearly that reaching a stable 

solution is of course easier with less steep pressure 

gradient at the well. The stability of the solution 

seems to increase faster than exponentially as a 

function of the gradient. 

 

In the case of the linearized pressure equation, it 

seemed to be unconditionally stable, where a 

timestep up to 10
10

 was tested. 

 

Comparison of pressure equation to Theis 

 

 
Figure 4: The pressure distribution as a function 

of distance from the well at time t = 3 h. 

 

Figure 4 shows both the numerical and the analytical 

solution to the axisymmetric well problem, as 

functions of distance from the well at time t = 3 h. As 

can be seen from the figure, the two solutions fit very 

closely. 

 

 
Figure 5: The difference between the numerical 

and analytical solutions as a function of distance 

from the well. 

 

Figure 5 shows the difference between the numerical 

and analytical solution at three different times. The 

difference increases slightly as time progresses. For 

the times considered here, the difference seems to be 

relatively low, through the spatial domain. The 

difference reaches a maximum where the differences 

in pressure, and hence the density are highest. 

Another interesting feature is that after approximately 

5 h the change in pressure due to the fluid extraction 

at the well, reaches the boundary at 1 km distance. 

Then the error due to the different boundary 

conditions in the numerical and analytical solution 

becomes apparent. 

 

 
Figure 6: The pressure distribution as a function 

of time at r = 10 m. 

 

 
Figure 7: The difference between the numerical 

and analytical solutions as a function of time. 

 

Figure 6 shows the numerical and analytical solution 

to the pressure distribution in the axisymmetric 

problem as functions of time at r = 10 m. Figure 7 

shows the difference between the numerical and 

analytical solutions, scaled with p0, as a function of 

time for different distances from the well. From those 



figures it can be seen that the difference close to the 

well increases rapidly in the beginning, and then 

steadily increases as the two solutions diverge. The 

error due to the different boundary conditions is most 

apparent in the r = 1 km line, where the error does 

not become apparent until after 5 hours. 

 

The main reason for the difference that exists 

between the numerical and analytical solutions, is 

that in the numerical solution ρ is a variable inside 

the laplacian, as can be seen in the pressure equation 

while a constant ρ0 is assumed in the analytical 

solution. If the physical properties are evaluated at 

the range of pressure that is retrieved from the 

numerical solution, the maximum relative difference 

in density is 13.7%. This effect is dominant in 

generating the difference from the analytical solution, 

while the viscosity difference of 2.71% and 

compressibility difference of 0.205% contribute 

much less to the non-linearity of the problem. 

 

 
Figure 8: The density as a function of vertical 

position in the water column at four different 

times. 

Figure 8 shows how the difference between the 

numerical and analytical solution becomes very large 

when the boundary conditions are modified to give 

rise to non-linearity.  As can be seen from the figure, 

the two solutions are very far from each other. If the 

physical properties are evaluated at the range of 

pressure that is retrieved from the numerical solution, 

the maximum relative difference in density is 109 %. 

This effect is dominant in generating the difference 

from the analytical solution, while the viscosity 

difference of 8.94% and compressibility difference of 

1.18% contribute much less to the non-linearity of the 

problem. 

 

Phase change 

 

 
Figure 9: The density as a function of vertical 

position in the water column at four different 

times. 

 

Figure 9 shows the density as a function of vertical 

position in the water column. It is evident that 

evaporation takes place, very slowly down the water 

column. This is mainly due to the high permeability 

and porosity used in the problem. Another interesting 

feature is how the sudden drop in density seems to 

become sharper as time progresses. At later times, an 

overshoot in the density is also evident, which is a 

result of the discontinuities in physical properties. 

 

 
Figure 10: The vertical position of the saturation 

front as a function of time. 

 

Figure 10 shows the vertical position of the saturation 

front as a function of time. The front can be seen to 

progress relatively quickly down the water column in 

the beginning, and then steadily reaching 

equilibrium. This effect is perhaps more evident in 

the linearized case where there are almost no changes 

to it after day 11. 

 



DISCUSSION 

In hydrothermal systems, pressure changes travel 

much faster than changes in temperature or enthalpy. 

Therefore it is desirable to treat the pressure equation 

as steady state, while the energy equation is treated 

transiently. Having an unconditionally stable solution 

of the pressure equation is therefore a big advantage 

in simulating geothermal systems numerically. This 

makes it possible to conclude that applying Fréchet 

derivatives can lead to a more stable and 

computationally efficient solution, at least in the 

superheated region. 

 

By validating the solver with the Theis solution, it is 

possible to have some confidence in its solutions. The 

versatility of the solver has also been displayed by 

showing its solutions in a region where the equation 

of state is highly non-linear. This should make it 

possible to use this solution method of the pressure 

equation for the hydrological part in future models 

for hydrothermal systems. 

 

The water column problem shows the ability of 

OpenFOAM to handle phase change in porous media. 

An interesting feature there is that the linearized 

solution is not unconditionally stable. This is 

probably due to the discontinuities in some physical 

properties. Because of that small time steps have to 

be used in that region, in order to arrive at a stable 

solution despite the linearization of the pressure 

equation. 

 

CONCLUSION 

These are just two examples on how the modular 

nature of OpenFOAM can be utilized to write 

specialized codes solving problems involving 

hydrothermal systems. This makes it possible to 

simulate some specific dynamics of the system in a 

computationally efficient way. Being able to 

manipulate the governing equations of each problem, 

while still maintaining a very high level of 

abstraction makes it easier to model phenomena in 

geothermal systems that are beyond the scope of 

traditional solvers. These might include fluids in the 

supercritical region, wellbore-reservoir interaction or 

near surface behavior.  
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