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Abstract 
The objective of this study is to develop a methodology and to create a tool for use in 
geothermal pipeline route selection.  Special emphasis is placed on the method minimizing 
the visual effects of the pipeline. Two different methods for route selection are presented.  

 In the first method, distance transform algorithms are utilized. First a method is presented 
to rank each point, in a digital elevation model representing the topography in question, 
based on visibility with regards to roads, buildings and public areas.  Then a new extension 
to variable topography distance transform algorithms is employed to obtain the optimal 
path. The second method uses a non-dominated sorting genetic algorithm to obtain the 
optimal path with regards to first of all visual effects and pipeline length and second of all 
visual effects and pressure drop. This method also works with the distance transform 
ranking method presented in this study. A new method to generate the initial genetic 
algorithm population based on visual effects and pipeline length constraints is presented. 
The constraint‘s included in both methods are maximum allowable pipeline incline and 
inaccessible areas.  

The methods are implemented for the Hverahlíð geothermal area in Iceland. The visual 
effects and length of the routes recommended by the methods are compared to each other, 
those of the shortest possible route and the route proposed in the original planning for the 
geothermal area. Both the methods presented by this study are effective in obtaining 
pipeline routes with significantly less visual effects than conventionally designed pipeline 
routes. In particular the distance transform based method offers a good, functional way to 
design pipeline routes with regards to minimal visual impact without the route length 
becoming too long. 
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Útdráttur 
Markmiðið með þessari rannsókn er að þróa aðferðafræði og búa til verkfæri fyrir hönnun 
á leiðum pípna á jarðvarmasvæðum. Sérstök áhersla er lögð á að aðferðin takmarki sjónræn 
áhrif pípnanna. Tvær mismunandi aðferðir fyrir leiðarval eru kynntar. 

Í fyrstu aðferðinni eru notuð fjarlægðar-umbreytingar algrím. Fyrst er kynnt aðferð sem að 
gefur hverjum punkti, í stafrænu hæðarlíkani af landslagi, einkunn byggt á hversu vel sá 
punktur sést frá t.d vegum, byggingum og ferðamannasvæðum. Síðan er ný viðbót við 
fjarlægðar-umbreytingar algrím notuð til að finna bestu leiðina. Önnur aðferðin notar 
genetísk algrím til að finna bestu leiðina með tilliti til í fyrsta lagi sjónrænna áhrifa og 
lengdar leiðarinnar og í öðru lagi með tilliti til sjónrænna áhrifa og þrýstifalls í pípunni. 
Seinni aðferðin metur sjónræn áhrif á sama hátt og sú fyrri. Ný aðferð er kynnt til að búa til 
upphaflegu einstaklingana fyrir genetísk algrím, með tilliti til skorða á sjónrænum áhrifum 
og lengdar pípu. Aðrar skorður sem báðar aðferðir taka tillit til eru hámarkshalli pípu og 
óaðgengileg svæði. 

Aðferðirnar eru báðar prófaðar á jarðvarmasvæðinu Hverahlíð á Íslandi. Sjónræn áhrif og 
lengd leiðanna eru borin saman við hvor aðra, stystu mögulegu leið og þá leið sem að 
upphaflega var ákveðin í skipulagi svæðisins.  Báðar aðferðirnar sem að kynntar eru í 
þessari rannsókn eru árangursríkar í að hanna leiðir fyrri pípur með töluvert minni 
sjónrænum áhrifum en leiðir hannaðar á hefðbundinn hátt. Sérlega býður aðferðin byggð á 
fjarlægðar-umbreytingar algrímum upp á góða og nothæfa leið til að hanna leiðir fyrir 
pípur á jarðvarmasvæðum með tilliti til þess að takmarka sjónræn áhrif, án þess að auka 
um of lengd leiðarinnar. 
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1 Introduction 
1.1 Motivation 
Route selection in geothermal areas in Iceland is a topic of growing importance. The visual 
effects of pipelines in Icelandic geothermal areas are a debated topic and demands for 
burying pipelines to eliminate their visual effects are growing louder, both from the public 
at large and the government. This would however significantly increase the costs of 
geothermal power plants, rendering less the feasibility of utilization of new geothermal 
areas. Therefore it is desired to obtain a route design method that minimizes the visual 
effects of a pipeline while also addressesing other concerns regarding geothermal pipeline 
route design. This is in essence the main objective of this study, to construct a method for 
pipeline route design that minimizes the visual effects of the pipeline. 

1.2 Previous work and contribution 
Route optimization is a topic that has been studied extensively and algorithms designed to 
obtain the shortest or least-cost path are readily available. None of these methods have 
however been adapted to the specific problem of obtaining the least-visual effects route for 
pipelines. In this study two classes of algorithms are used and adapted to solve this 
problem, distance transform algorithms and non-dominated sorting genetic algorithms. 
Distance transform (DT) algorithms have been shown (Smith, 2005) to be very effective at 
obtaining the shortest route in a very computationally effective way. A DT algorithm also 
has the useful property of registering the shortest path from each point in the grid to the 
closest object point and this property is used (as will be presented below) in the visual 
effects ranking method. Genetic algorithms have been extensively used in recent years 
with good results for multi-objective optimization problems (Cheng & Li, 1997). For this 
reason a multi-objective genetic algorithm is adapted for the second method of this study. 

The specific DT used in the first method of this study is the variable topography distance 
transform algorithm (VTDT). The VTDT was introduced by De Smith (2005). The VTDT 
has been used by Kristinsson (2005) to obtain the shortest route for geothermal pipelines, 
showing good results. De Smith (2004) also introduced the Multiple Weight Distance 
Transforms (MWDT). The use of the MWDT for separator selection was suggested by 
Kristinsson (2005). The MWDT is extended in this study to include constraints and 
inaccessible areas and is utilized to obtain the optimal location for separators and power 
plants. 

The first method of this study extends the work of Kristinsson (2005) and de Smith (2005) 
first of all to include visual effects optimization and second of all the inclusion of multiple 
cost functions is examined. The main innovation of this study is the method of ranking 
visual effects and then the optimization with the two different methods with regards to 
visual effects. The visual effects ranking method is used by both the methods of this study. 
This first method presented, represents a complete tool for the optimization of pipeline 
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routes in geothermal areas with regards to minimizing the visual effects and includes the 
selection of power plant, pipeline gathering point and separator sites. 

The second method presented in this study uses the Non-dominated sorting genetic 
algorithm II (Deb, Agrawal, Pretap, & Meyarivan, 2002).  The algorithm used in this study 
uses all the principles of the NSGA II with some additions and adjustments, as will be 
further discussed below. A new method of generating the initial population based on visual 
effects and pipeline length is proposed in this study, as an extension to the NSGA II for the 
particular problem of pipeline routing. A simple GA is also used for both methods to 
optimize the inclusion of expansion units. The second method includes optimization with 
regards to pressure drop, visual effects and route length. 

In the past few years many evolutionary multi-objective algorithms that obtain solutions on 
the pareto-optimal front have been proposed but the NSGA II has been shown to be less 
computationally intensive and perform better with regards to obtaining well distributed 
solutions over the pareto front (Deb, Agrawal, Pretap, & Meyarivan, 2002).  Therefore it 
was chosen as the basis for the second method of this study. 

To summarize the innovations to the presently used methods in this study include, for the 
first method, adjustments to the distance transform algorithms (in the form of the MLCDT 
covered below) and a new distance transform based visual effects ranking method. The 
second method also utilizes the distance transform visual effects ranking method along 
with the NSGA II algorithm, which has not been adapted before to the problem of pipeline 
route optimization. 

1.3 Overview 
Chapter two provides background on the present methods used in this study. First of all the 
methods used for route selection in the geothermal industry and methods used for pipeline 
route selection in general are reviewed. Then introductions to distance transform 
algorithms and non-dominated sorting genetic algorithms are provided. The final part of 
the second chapter covers pressure drop in two phase pipelines. In chapter three 
adjustments and additions to the present methods – all of the innovations of this study - are 
presented along with a new method of ranking points in a given topography, based on 
visual effects. In the fourth chapter the Hverahlíð geothermal area case study is presented 
and in the fifth chapter the conclusions of this study are discussed 
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2 Present methods 
In the geothermal industry today mathematical optimization of the pipeline route is not 
common. The most common methods employed are ad hoc methods, with the design 
process largely manual. Often GIS based systems are employed for manual selection of 
pipeline routes. Throughout the design process the main goal is to keep the pipeline route 
as short as possible, to minimize costs and pressure drop. It is also important to minimize 
turns due to the extra costs they incur. Another important goal is to minimize incline, first 
of all to prevent undesirable flow regimes from forming (i.e slug flow conditions) and 
second of all due to pressure drop if the incline is upwards. Taken into account in the 
design process is the inclusion of expansion loops at regular intervals. Due to the high 
temperatures in geothermal pipelines, expansion loops are necessary at regular intervals.  
One of the main impetuses of this study is to optimize this process and provide an effective 
design-aid.  

Recently it has been becoming more common to take the visual effects of pipelines into 
account in the design process. This has specifically been the case in Iceland, but to a lesser 
degree in other countries. Geothermal pipelines are relatively large and due to the inherent 
nature of geothermal fields, must often traverse great distances to reach the power plant. 
This is especially the case for re-injection pipelines. Due to the cooling effects re-injection 
has on the reservoir, it is often desired to re-inject the geothermal brine in the peripheral 
areas of the reservoir. Re-injection pipelines therefore at times need to travel great 
distances. Geothermal areas are often by their very nature thought of as worthy of 
protection and therefore it is desired to minimize the visual effects. Though this aspect is 
currently at times taken into account in the design process, it is not optimized. 

Route optimization is a topic that has been studied extensively and a plethora of algorithms 
designed to obtain the shortest or least-cost path are available. This study does not offer a 
comprehensive state of the art of those methods but will touch on some of the most 
common of them. Linear programming methods have been popular (Gass, 1985) but many 
other optimization techniques have also been adapted to the problem. Metaheuristic 
algorithms have in recent years especially been used extensively. Genetic algorithms 
(Gopalakrishnan & Sooda, 2009), ant colony optimization  (Bell & McMullen, 2004), 
simulated annealing (Gopalakrishnan & Sooda, 2009), particle swarm optimization 
(Yavuz, 2004) and harmony search  (Geem, Lee, & Park, 2005) are examples of methods 
that have been used for vehicle routing techniques. Finally, as previously mentioned 
distance transform algorithms have been adapted to the problem (Kristinsson, 2005). In 
this study that method is modified and extended.  

2.1 Distance transforms 
A distance transform is an image processing algorithm for digital images. A standard DT 
works with a binary digital image that consists of object points and non-object points 
represented by black and white respectively in figure 2.1 below. At its simplest, for each 
non-object point in an image, a DT obtains the distance from that point to the closest object 
point. Any point in an image can be defined as an object point, they are simply a set of 
points from whom, for each point, it is desired to map the distance to the closest object 
point. An example is shown below. In the resulting matrix after a DT has been performed 
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on the image, each non-object grid point has a value corresponding to its distance to the 
closest the object point. This is depicted in figure 2.1. The ability to generate the distance 
isolines that can be clearly seen on the right in figure 2.1 is the most important property of 
distance transforms. It is from this property that the possibility of using DT’s for route 
optimization arises. 

 

Figure 2.1: Example of a simple distance transform. The black pixels in image showing the letter „I“ 
on the left represent object points, all the other pixels in the image (the white pixels) represent pixels 
for whom the distance transform calculates the distance to the closest object point. The results of the 
distance transform, the distance isolines, are shown in the color image on the right where the scale is 
from dark blue – closest to object points- to dark red – furthest away from object points. 

2.1.1 Chamfer distance transforms 

When utilizing a distance transform algorithm it is straightforward to utilize exact 
Euclidian distances to generate the distance isolines. This is in essence a global operation 
and unless the digital picture is very small, calculating the exact Euclidian distances can be 
computationally intensive and inefficient, therefore it is more efficient to compute local 
distances and propagate them over the entire image to estimate the global distances (Smith, 
2004). This is most commonly done by using chamfer metrics which estimate the distance 
from the target point to the cells in a local neighborhood. Most commonly 3x3, 5x5 or 9x9 
chamfers are utilized with the computation being in a parallel or sequential manner as will 
be covered below. For computations in this study a 5x5 chamfer was utilized. The larger a 
chamfer is, the greater accuracy is achieved, but at the same time calculations become 
more computationally intensive. The 5x5 chamfer was deemed to offer a compromise 
between computational intensiveness and accuracy and was therefore chosen. Figures 
2.2.1-3 depict 3x3, 5x5 and 9x9 chamfers respectively: 

 

Figure 2.2.1: 3x3 chamfer matrix that is used in a distance transform algorithm, the letters a-b 
represent the incremental distances in the chamfer matrix 
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Figure 2.2.2: 5x5 chamfer matrix that is used in a distance transform algorithm, the letters a-c 
represent the incremental distances in the chamfer matrix 

 

Figure 2.2.3: 7x7 chamfer matrix that is used in a distance transform algorithm, the letters a-e 
represent the incremental distances in the chamfer matrix 

When computing a distance transform on a digital image, the values of all the object points 
in the image are set to zero and the values of all other points are set to a very large number 
(f.a.e 999999). The next step is to place chamfer masks successively over each pixel in the 
image, which maps the value of the distance to the nearest object point to each grid point.  
Distance transforms can be computed in parallel or sequentially, in this study parallel 
calculations will be employed, with a forward and a backward mask placed over each pixel 
in the image and the local values in the mask computed. The algorithm is iterative and can 
require a large number of iterations (f.a.e 10-30 for the digital elevation model matrix used 
in the case study presented in chapter 4) to complete the distance transformation, 
depending on the matrix size. A forward and backward mask for 7x7 chamfers are depicted 
below in figures 2.3.1 and 2.3.2 

 

Figure 2.3.1: Forward mask for paralell calculations in a distance transform algorithm utilizing a 7x7 
chamfer matrix, the letters a-d represent the incremental distances in the chamfer matrix 
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Figure 1.3.2: Backward mask for paralell calculations in a distance transform algorithm utilizing a 7x7 
chamfer matrix, the letters a-e represent the incremental distances in the chamfer matrix  

The central function in a distance transfer algorithm is the following (Bellman’s equation): 

d0 = min(dk + LDM(k), d0)          2.1) 

Where dk is the grid point value of the k-th element in a chamfer mask, LDM(k) is the 
local distance metric and d0 the current value of the grid point at the center of the chamfer 
mask. The algorithm places the masks in parallel on each pixel in an image. The result of 
employing a DT algorithm on a digital image is a matrix where all the elements have the 
value of the distance to the closest image pixel. An example of a sequential DT on a simple 
digital image is shown below in figures 2.4.1-3 

 

Figure 2.4.1: Example matrix for use in a distance transform example. Object points are represented 
by „0“ and all other grid points by „99999“. The results of using a distance transform algorithm on 
this matrix are shown in figures 2.4.2 and 2.4.3 respectively 
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Figure 2.4.2: Matrix showing results from using a distance transform algorithm on the example matrix 
shown in figure 2.4.1. 

 

Figure 2.4.3: Visual representation of matrix showing results from using a distance transform 
algorithm on the example matrix shown in figure 2.4.1. The scale is from dark blue – closest to object 
points- to dark red – furthest away from object points. 

2.1.2 Digital elevation models 

A digital elevation model (DEM) is a digital representation of a given ground topography. 
DEM’s are available for the majority of Icelandic topography with an accuracy of up to 
0.25 𝑚2.  Each grid point in a digital elevation model matrix will have a value equal to (or 
proportional to) the height of the corresponding topography. An example of a DEM is 
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shown below in figure 2.5.2 which represents only a random part of the topography in 
figure 2.5.1 (the DEM corresponding to figure 2.5.1 is 500x500 grid points). 

 

Figure 2.5.1: Example topography, digital elevation model of which is partially depicted in figure 2.5.2. 
The scale is from black – lowest elevation in this topography- to white – highest elevation in this 
topography. 

 

Figure 2.5.2: Digital elevation model of a random part of figure 2.5.1. Each grid point has the value of  
the height at the corresponding topographical location. 
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2.1.3 Variable topography distance transforms 

Variable topography distance transforms were introduced by Smith (2005). A VTDT 
algorithm offers a way to obtain the shortest path by using distance transforms on digital 
elevation models and introducing constraints by way of digital elevation models. 3-D 
landscapes are essentially open 2-D manifolds, which renders this possible (Smith, 2005). 
The VTDT algorithm incorporates slope constraints by assigning each cell a value from the 
corresponding digital elevation model. The slope distance is then calculated and if it 
exceeds the defined maximum slope a new value is not mapped to the grid point. The 
adjustment to the main function of the algorithm is as follows: 

slope =  DEMk−DEM0
LDM(k)                       2.2) 

if( dk + LDM(k) < 𝑑0  &&   𝑠𝑙𝑜𝑝𝑒 < 𝑀𝑆𝑙𝑜𝑝𝑒) 

then: d0 = dk + LDM(k)           2.3) 

Where DEMk represents the value of the digital elevation model at the grid point 
corresponding to the k-th element of the mask, DEM0 is the value of the digital elevation 
model at the grid point corresponding to the center element of the mask and MSlope is the 
defined maximum allowed slope. The result of this change in the algorithm is a shift in the 
resulting isolines. It should be noted that the methods to obtain the shortest path remain the 
same. These methods will be further covered below. The example below shows the results 
obtained by using the VTDT algorithm on the topography in figure 2.6.1. Note that the 
single object point used by the VTDT algorithm was at the center of figure 2.6.2. 
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Figure 2.6.1: Example topography, digital elevation model of which is used for the variable topography 
algorithm resulting in the matrix visually depicted in figure 2.6.1. The scale is from black – lowest 
elevation in this topography- to white – highest elevation in this topography. 

 

Figure 2.6.2: Visual representation of matrix resulting from using a variable topography distance 
transform algorithm on the a digital elevation model representing the topography shown in figure 
2.6.1. The scale is from dark blue – lowest value of the resulting VTDT matrix - to green – highest 
value of the resulting VTDT matrix. 
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The use of VTDT has been proposed for geothermal pipelines in order to obtain the 
shortest route (Kristinsson, 2005), showing good results. The method employed in this 
study extends his method to include visual effects optimization along with the original 
objective of obtaining the shortest route (or in this case a sufficiently short route). The 
algorithm is modified to fulfill these goals as will be covered below. Another extension 
that will also be covered below is that a new distance transform based method of visual 
effects ranking is presented. 

2.1.4 Multiple weight distance transforms 

Multiple weight distance transforms (MWDT) were introduced by Smith (2004). A 
MWDT is an algorithm that utilizes multiple distance transforms, weighted based on 
relative importance, to obtain a minimum (or maximum).  The simple version of the 
algorithm contains only one criterion (usually distance) but optimization with regard to 
multiple criteria is also possible. For the specific problem of obtaining optimal separator 
and power plant locations, criteria that are taken into account are distance, local incline and 
land availability. Resulting from a MWDT is a composite surface with one or more 
minima. It is utilized in this study with additional constraints to obtain the optimal location 
for separators and power plants. Following is the central function of the MWDT algorithm 
where DT(Ai) represents the distance transform on set Ai, ki the relative weight of set Ai 
and z the matrix resulting from the MWDT algorithm. 

z = ∑ kiDT(Ai)n
i=1             2.4) 

In figures 2.7.1 and 2.7.2 below is shown an example of how an unconstrained MWDT 
algorithm solves the problem that when given a set of points, to obtain the point with the 
least total distance to all the given points. 

 

Figure 2.7.1: Example topography used for an unconstrained multiple weight distance transform 
algorithm example, the visual representation of the results of which is shown in figure 2.7.2. The red 
dots in the image represent the set of points for whom the point with the least total distance is obtained 
in figure 2.7.2. The scale is from black – lowest elevation in this topography- to white – highest 
elevation in this topography. 
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Figure 2.7.2: Visual representation of the results of using an unconstrained multiple weight distance 
transform algorithm on the example depicted in figure 2.7.1. The scale is from dark blue – points with 
the least total distance to the given set of points - to dark red – points with the highest total distance to 
the given set of points.  

2.1.5 Non-accessible areas and distance transforms 

Distance transform algorithms handle non-accessible areas by either modifying the digital 
elevation model used or introducing an extra pseudo objective function (when using a 
MLCDT – see chapter 3.2.2. For single-objective function DT’s, pixels in the DEM 
corresponding to the non-accessible areas are given a very high value, this in effect means 
that when equations 2.2-3 are applied to a pixel in a mask, that incremental path is rejected, 
due to the maximum slope being exceeded. In figures 2.8.1 and 2.8.2 is shown the impact 
of including a non-accessible area in the application of the distance transform. In practice 
this can be anything from a lake to a residential area. 
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Figure 2.8.1: Variable topography optimal route without constraints on non-accessible areas. The 
optimal route is represented by the red line. The scale is  from black – lowest elevation in this 
topography- to white – highest elevation in this topography. 

 

Figure 2.8.2: Variable topography optimal route with constraints on non-accessible areas. The optimal 
route is represented by the red line and the white area represents the non-accessible area. The scale is 
from black – lowest elevation in this topography- to white – highest elevation in this topography. 
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2.1.6 Optimal route with distance transform algorithms 

To obtain the optimal route with distance transform algorithms two different approaches 
are possible. To consider first of all the simplest case, optimization with regards to a single 
objective – route length, the shortest path is known to be orthogonal to the distance isolines 
(distance bands) generated by the distance transform. After a start point is chosen, the first 
part of the shortest route is a line from that point orthogonal to the closest isoline, in the 
direction to the end point. The second part of the line is orthogonal to the next isoline. This 
process is then repeated until the end point is reached. The extension to multiple objectives 
– equal cost isolines – is straightforward. The same rules apply to equal cost surfaces 
(taking into account multiple objectives) as for equal distance isolines, the optimal rotue is 
similarly orthogonal to the equal cost isolines. The process is therefore the same. 

A better solution is to record the incremental path movements as a part of the distance 
transform algorithm. The algorithm can be amended to record for each point in the grid, 
the direction to the next grid point, on the optimal path, to the start point. While this is 
essentially the same method as the previous one, this representation gives smoother and 
better results and requires less computation time. The upper limits on the accuracy of this 
method are the fineness of the grid in question, while the accuracy of the previous method 
is limited by the number of isolines generated. The accuracy of the second method is 
therefore greater, and indeed the upper limit on the accuracy of the first method, for a 
given grid, is the accuracy provided by the second method. The second method is also 
more computationally efficient, as the incremental path movements are simply recorded in 
a matrix of the same size as the original grid, simultaneously with the mask being placed 
on each grid point. The second method requires the computation of isolines after the 
distance transform matrix has been generated. The example depicted below in figure 2.9 
shows typical isolines resulting from using a VTDT algorithm and the optimal path 
generated using the second method described above. 
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Figure 2.9: Example of an optimal path obtained with a variable topography distance transform 
algorithm using the method of recording incremental path movements to obtain the optimal route. The 
red line represents the optimal route and the scale is from dark blue – lowest value of the resulting 
VTDT matrix - to dark red – highest value of the resulting VTDT matrix. 

2.2 Genetic algorithms 
Genetic algorithms (GA) are optimization methods that use aspects of the natural evolution 
process (Arora, 2004). They are a part of the larger class of evolutionary algorithms. 
Genetic algorithm have been extensively used in engineering, computer science, 
bioinformatics, physics, manufacturing, economics and many other fields.   

2.2.1 Basic principles 

The basic idea of a genetic algorithm is that a population of individual solutions 
(chromosomes/strings) evolves in the direction of better solutions.  A new set of solutions 
is produced from the solutions of the previous generation in a manner that the average 
fitness of the entire population of solutions improves. This evolution mirrors the natural 
evolution process. Genetic algorithms require only function values to further the process 
towards convergence, continuity and differentiability is not required or used in the 
algorithm. Due to this, genetic algorithms are very general and can be applied to a wide 
variety of problems – discrete, continuous and non-differentiable (Arora, 2004). The main 
drawbacks of genetic algorithms is first of all that they require a large number of function 
evaluations and secondly that they do not guarantee convergence to a global optima. The 
three classical operators in a genetic algorithm are selection, crossover and mutation, there 
are however many variations of GA’s available with variations in those operators and 
additional operators. 

Initialization 
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In most applications of genetic algorithms the initial population is randomly generated, this 
is however not always the case and it can beneficial to have an initial population that 
represents more viable solutions than a randomly generated population would offer. This is 
especially the case when the solution space is exceedingly large (as is indeed the case for 
the problem of this study).  To represent the design variable values in the strings, a few 
different encoding approaches are available. Binary encoding, where a variable is 
represented as a string zeros and ones, is most common but real number encoding and 
integer encoding are also widely used. The size of the initial population is dependent on a 
number of factors such as the nature of the problem and the size of the search space. 

Selection 

For genetic algorithms, in the same way as for the natural evolution process, a selection 
process occurs. At each generation a number of individuals are selected, the next 
generation is then generated from those selected individuals through the use of the genetic 
operators, crossover and mutation, covered below.  There are a multitude of different 
selection methods available for genetic algorithms; the common thread is that the methods 
are fitness-based. What this essentially means is that individuals with a higher fitness have 
a higher probability of selection. The fitness of an individual is determined through 
function evaluations. This can be for an example, the total length of a pipeline or the 
weight of an object.   

The selection method used in this study is called tournament selection.  A number of 
individuals (most commonly two or three) are selected from the entire population and these 
individuals compete for selection, mimicking the natural selection process. The fittest 
individuals (with the lowest or highest values, depending on the objective) are then 
selected for crossover. The selection method of this study and other methods used are 
further covered and detailed in chapter 3.3. 

Crossover 

The genetic operator corresponding to reproduction in the natural evolution process is 
called crossover. This is essentially the process of generating new children individual 
solutions from the parent individuals by combining or mixing the parent individuals. Most 
commonly two children are created from two parent individuals, however this can and does 
vary.  There are a multitude of crossover methods available for genetic algorithms such as 
one point or two point crossover and uniform crossover. The selection method of this study 
is called a two point crossover. For two point crossover the two parent individuals are 
divided at two crossover points and from these parts the two children are created, 
essentially mirror individuals. 

Mutation 

  Mutation is a genetic operator intended first of all to add additional diversity into the 
population and to prevent the loss of valuable genetic material in the selection and 
crossover steps (Arora, 2004).  Mutation is a necessary step in the genetic algorithm that 
prevents convergence to local minima. Classically for a binary genetic algorithm the 
selection process would simply involve random selection of a number of individuals and 
randomly selecting a bit on the string and switching that bit from 0 to 1 or vice-versa.  This 
can be much more complicated, especially for continuous and discrete genetic algorithms. 
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The mutation method of this study involves the random displacement of the discrete 
variables; this is covered further in chapter 3.3. 

Termination 

There are a number of methods for terminating a genetic algorithm, most commonly the 
GA will be terminated if certain criteria have been reached, for an example a sufficiently 
low cost of a mechanical part. Other methods include for an example termination having 
reached a certain number of generations, termination upon manual inspection or the 
allocation of a certain computational time to the algorithm. A combination of methods is 
also common. The algorithm of this study uses termination upon reaching a certain number 
of generations. 

2.2.2 Multi-objective optimization and pareto genetic algorithms 

For many optimization problems and specifically the problem of pipeline route 
optimization, there are multiple, often conflicting objectives. A multi-objective 
optimization problem (MOP) can be defined as obtaining a vector of design variables to 
minimize a vector of objective functions that often conflict with one another. Such a 
problem takes the form (Cheng & Li, September 1997): 

             minimize {f1(x�⃗ ), f2(x�⃗ ), … , fn(x�⃗ )} subject to {g1(x�⃗ ), g2(x�⃗ ), … , gm(x�⃗ )} ≤ 0        2.5) 

Where fi(x�⃗ ) and gi(x�⃗ ) are the objective and constraint functions. For a maximization 
problem or a mixed-objective the objective function would be normalized and the form of 
problem would be the same as above. 

The main problem with solving MOP‘s is that the multiple optimization objectives can be 
conflicting, even have completely opposing aims.  For an example for the problem of 
pipeline optimization the first and most obvious performance estimate is the pipeline 
length. The optimal solution is obviously a straight line from the start point to the end 
point. However with regards to two other performance estimates, the visual effects and 
incline, a straight line can be poorly performing solution. If it is desired to minimize the 
visual effects, the optimal route will be one that changes direction often in order to hide the 
pipeline as much as possible and in order to keep the incline low enough to avoid 
undesirable flow regimes and pressure waves a straight line will usually not be possible. 
The simplest solution to a MOP is to create a single objective function by using a weighted 
average of the constituent objective functions of the problem. Each objective function is 
given a relative weight factor and the performance index is then a simple sum of weighted 
cost functions. For n different cost functions, where wi represents the relative weight of 
cost function fi(x�⃗ ), the performance index (PI) is then: 

  PI = ∑ wifi(x�⃗ )n
i=1              2.6) 

The problem with this method is to determine the weight coefficients. This requires a 
careful examination of the cost functions and the relative importance of the optimization 
goals and in the end a judgment decision, which is in its nature, arbitrary. This method is 
used for the extension of the distance transform method in this study to multiple objectives 
as will be presented in chapter 3.2. 
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Pareto Genetic Algorithms 

In multi-objective optimization there is usually no single optimal solution that performs 
better with regards to all the objectives. There is however a set of solutions that are equally 
optimal that are called pareto-optimal or non-dominated solutions. A solution is pareto-
optimal if a solution cannot be found that performs better with regard to all the objectives.  
A vector of solutions x′, where fi(x�⃗ ) are the objective functions, is pareto optimal if and 
only if (Cheng & Li, 1997): 

 fi(x�⃗ ) ≤ fi�x′���⃗ �  for all i ∈ (1: m)           2.7) 

          fi(x�⃗ ) < fi�x′���⃗ �  for at least one i ∈ (1: m)         2.8) 

The aim of a pareto genetic algorithm is to obtain this set of solutions.  The effectiveness 
of a pareto genetic algorithm is usually defined by the distribution of the solutions on the 
pareto front. Figure 2.10 below shows a typical pareto optimal set and the distribution of 
the individual solutions on the pareto front for a maximization problem with two 
objectives.  

 

Figure 2:10: Example of a pareto optimal front obtained using the second method of this study on the 
Hverahlíð case study presented in chapter four. The two optimization objectives are pressure drop and 
pipeline visual effects score. The pareto optimal individuals are indicated by the blue circles in the 
figure. Note that this figure is the same as figure 4.12. 

2.2.3 Non dominated sorting genetic algorithm 

The Non-dominated sorting genetic algorithm (Srinivas & Deb, 1995) is based on the 
principle of non-dominated sorting (Goldberg, 1989) mentioned above. It was one of the 
first genetic algorithms created that use this principle but since its creation it has come 
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under some criticism (Deb, Agrawal, Pretap, & Meyarivan, 2002) leading to the creation of 
the Non-dominated sorting genetic algorithm II (NSGA II).  

The basic idea of a NSGA is to use a non-domination ranking selection method to favor 
individual solutions that perform well and a niche method is then used in order to maintain 
stable subpopulations of well performing individuals (Srinivas & Deb, 1995). For the 
NSGA the crossover and mutation operators are unaltered, the only operator that changes 
from a conventional GA is the selection operator. As previously mentioned an 
individual/chromosome is non-dominated if no individual other individual in the 
population performs better with regards to all the objectives. The non-dominated 
individuals are given rank 1 (i.e they constitute the first front). They are then removed 
from the population. This process is then repeated with the rank progressively rising, until 
the entire population has been ranked.  All individuals in each front are given a fitness 
value. The first front receives the highest value and with each front the fitness value 
progressively decreases.   

In multi-objective optimization a genetic algorithm can have difficulties with maintaining 
diversity in the population. It has a tendency to converge to certain peaks and thus does not 
explore all the solution space.  A genetic algorithm is based on the principles of biological 
evolution, where a variety of species exist. In genetic algorithms the corresponding 
phenomena is called a niche and it is desired to form multiple niches (i.e subpopulations) 
in order to maintain diversity in the population and prevent convergence to local minima. 
The population in genetic algorithms optimization is by necessity finite. This limited size 
along with the stochastic errors associated with a genetic algorithm cause the individuals of 
the population to become similar, in essence many individuals converging to a single 
optima. In order to combat this, a niching strategy is employed (Deb & Goldberg, 1989).  

In the NSGA I a niching strategy called sharing is used. Sharing functions in a way that the 
fitness value of the individuals is effectively shared among the population.  For each front 
a sharing function value between every pair of individuals is calculated. 

      C�dij� = �  1 − � dij
σshare

�
2

, if dij < σshare 

 0,                                   otherwise
         2.9) 

Where C�dij� is the sharing function value for two individuals, dij represents the objective 
space distance between two individuals in the same front and σshare the defined sharing 
parameter. For each individual its sharing values with all the other individuals are added 
together, this is called a niche count. An individual’s fitness (the fitness value of all the 
individuals in the front) is then divided by the niche count. This results in a shared fitness 
value which is used for the selection process. 

2.2.4 Non-dominated sorting genetic algorithm II 

The NSGA II addressed 3 problems with the NSGA algorithm: First of all the overly high 
computational complexity of the non-dominated sorting, rendering optimizations with 
large populations very computationally intensive when using the NSGA (Deb, Agrawal, 
Pretap, & Meyarivan, 2002).  Second of all the NSGA II addressed the lack of an elitist 
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strategy in the NSGA and thirdly it addressed the fact that the NSGA did not propose a 
value or a method to calculate the sharing parameter (see above). 

Faster non-dominated sorting method 

For the NSGA II algorithm the sorting method is different from the NSGA I, with the 
computational complexity being less (Deb, Agrawal, Pretap, & Meyarivan, 2002). For each 
chromosome i the number of chromosomes that dominate it 𝑛𝑖 and the set of individuals 
that it dominates 𝑆𝑖 is calculated. All the non-dominated individuals are gathered as the 
current front. For the sets 𝑆𝑖 corresponding to the individuals in the current front, each time 
an individual appears in the set its count 𝑛𝑖 drops by one.  When the count 𝑛𝑖 of a 
chromosome reaches zero it becomes part of the next front. The first front receives the rank 
0 with the rank rising with each front. This process is repeated until all the chromosomes 
have been ranked.  

Local crowding distance and crowded comparison operator 

In addition to an individual’s non-domination rank, in the NSGA II for each individual an 
attribute called local crowding distance is calculated. The local crowding distance of an 
individual has one component for each optimization objective and the value of each 
component is the average of the two adjacent objective function values. The crowding 
distance of the i-th individual is then the average side length of a cuboid enclosing the 
objective function values of the (i-1)-th, i-th and (i+1)-th individuals. To guide the 
selection process in the algorithm a crowded comparison operator is introduced which 
functions in the way that if two individuals have the same non-domination rank, the fitness 
of the individual with the higher crowded crowding distance value is in effect higher, i.e 
that individual is preferred (Deb, Agrawal, Pretap, & Meyarivan, 2002). 

Elitism 

To introduce elitism into the algorithm the following procedure is incorporated into the 
selection method of the algorithm. The NSGA II forms a combined population, at each 
generation, of the parent and children populations. If the population size of the algorithm is 
N individuals the combined population will have 2N individuals.  This population is then 
ranked according to non-domination. The parent population is created by adding to it the 
successive non-domination fronts until its size becomes larger then N. Then the crowded 
comparison operator is used to select points from the last non-domination front until the 
total parent population size reaches N. This is then the population used for selection, 
crossover and mutation. For the selection process binary tournament selection is used with 
the crowded comparison operator. 

2.3 Pressure drop of two-phase flow in pipelines 
Several different methods for calculating the pressure drop of two phase flow in pipelines 
have been proposed (Woldesemayat & Ghajar, 2007). Separated flow models are a class of 
commonly utilized models (Thome, 2006) for calculating the two phase drop, they employ 
two artificial pipes, one carrying the single phase gaseous phase and the other the liquid 
phase.  The resulting two-phase pressure drop is then calculated from the single-phase 
pressure drops. Varying in many of the models is the correlation used for calculating the 
void fraction, which is essential to estimating the two phase pressure drop from the single 



21 

 

21 

phase calculations. Pressure drop in two-phase flow in geothermal pipelines consists 
mainly of static pressure drop, momentum pressure drop and frictional pressure drop.  
Below are shown the methods used in this study to calculate the respective pressure drop 
components. 

In this study the pseudo flow model of Harrison (1975) and Zhao, Lee & Freeston (2000) 
is used for pressure drop calculations. The Harrison-Zhao model has been shown to be 
effective (Zhao, Lee, & Freeston, 2000) in predicting the pressure drop in two phase 
pipelines. This method relates the pressure drop of a two phase system to that of pseudo-
single-phase system which has the same pressure drop.  It assumes that the pseudo single-
phase flow has the same boundary layer velocity distribution as the two phase flow (Zhao, 
Lee, & Freeston, 2000). The average velocity of the pseudo flow is used to determine the 
qualities of the flow and the two phase pressure drop using conventional methods for a one 
phase system.  

The total pressure drop is calculated with the following equation, where pressure drop in 
bends is taken as a special component of the total pressure drop. This is due to it being 
calculated in this study by special methods, it should be noted however that pressure drop 
in bends is a combination of the three main pressure drop factors in equation 2.10. 

∆Ptotal = ∆Pstatic + ∆Pmomentum + ∆Pfrictio nal + ∆Pbends       2.10)                                 

Two parameters that will be used extensively in the pressure drop calculations are mass 
velocity and the void fraction. In the equation below 𝑚𝑣̇  represents the mass velocity, �̇� 
the mass flow rate and A is the pipeline cross sectional area. 

            mv̇ = ṁ
A

                                                                  2.11) 

Cross sectional void fraction: 

ϵ = Ag
A

                                                                    2.12) 

Where Ag is the area of the gas phase, A the total area and ϵ represents the void fraction. 

Static pressure drop 

The static pressure drop is the pressure drop due to the elevation head (the gravitational 
pressure drop). For a two phase flow it is calculated using the homogeneous density which 
is the density averaged for the two flows using the void fraction. 

Homogeneous density: 

 ρH = ρgϵ + ρl(1 − ϵ)          2.13) 

Where ρg and ρl represent the densities of the gas and liquid phases. The static pressure 
drop is then calculated using the following equation: 

    ∆Pstatic = ρHg∆H                                   2.14) 
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Frictional and momentum pressure drop 

The momentum pressure drop in the pipe is the pressure drop component due to the kinetic 
energy change in the flow. The momentum pressure drop between two points in a pipe is 
calculated from variation in the properties of the flow at the points. For an evaporating 
flow the kinetic energy of the flow increases as more of the fluid evaporates. This is due to 
the density of the vapor phase being less than that of the liquid phase and it results in a 
momentum pressure drop. If the flow is condensing the situation is reversed and the 
pressure increases. Equation 2.15 below is used to calculate the momentum pressure drop. 
However as equation 2.21 shows the momentum pressure drop can be included in the 
calculations for the friction pressure drop using the method of Harrison and Zhao. 

Momentum pressure drop: 

∆Pmomentum = mv̇ 2 ��
(1−x)2

ρl(1−ϵ) + x2

ρgϵ
�
out

− � (1−x)2

ρl(1−ϵ) + x2

ρgϵ
�
in
�       2.15) 

where x represents the steam quality. In the method of Harrison and Zhao, to predict the 
two-phase pressure drop, an equivalent pseudo single-phase flow is assumed. This artificial 
flow has the same boundary layer velocity distribution as the two-phase flow and it is the 
average velocity of this flow that is used to determine the friction coefficient of the flow 
(Zhao, Lee, & Freeston, 2000). As is shown below in equation 2.21 the pressure drop is 
then calculated using the friction coefficient. This has been shown to be in good agreement 
with experimental data (Zhao, Lee, & Freeston, 2000). The average liquid phase velocity 
and the wall friction factor were first used by Harrison (1975) to predict two-phase 
pressure drop, using the techniques developed for single-phase flows but Zhao, Lee, & 
Freeston (2000) extended the idea to the pseudo flow being that flow which has the same 
boundary layer velocity distribution as the two-phase liquid layer.  In that article the 
correction factor 1.1(1-x) was also introduced into equation 2.16. 

Liquid phase velocity: 

                                                                 Vf� = 1.1(1 − x) mv̇ (1−x)
ρl(1−ϵ)          2.16) 

Average velocity of equivalent single phase flow: 

                                                                 V� = Vf�
(1−ϵ)

(1−ϵ)8/7�1+87√ϵ�
          2.17) 

The following equation for the void fraction that is utilized in this study was introduced by 
Zhao (2000): 

     1−𝜖
𝜖

= ��1
𝑥
− 1� �𝜌𝑔

𝜌𝑙
� �𝜇𝑙

𝜇𝑔
��

7
8�

         2.18) 

Two phase dynamic viscosity: 

    µtp = xµg + (1 − x)µl           2.19) 
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Where µg and µl are the viscosities of the gas and liquid phases respectively. The Reynolds 
number is calculated using the following equation: 

                                                                Re = mv̇ di
µtp

                     2.20) 

Where di represents the inner diameter of the pipeline. The two phase friction factor is 
estimated by the following equation: 

                                                                 ftp = 0.316
Re0.25            2.21) 

Combined frictional and momentum pressure drop: 

                                                            ∆Pfrictio n+momentum = fρlV�2L
2di(1−AC)                  2.22) 

Where the acceleration correction factor is estimated by: 

                                                            AC = mġ
ρgpA2ϵ

                        2.23) 

Where p is the pressure in the pipeline and mġ  represents the mass flow rate of the gas 
phase. 

Pressure drop in bends 

Pressure drop in bends for two-phase flow is calculated using the classical two phase 
multiplier method. In this study the Chisholm B-type multiplier, is utilized (Chisholm, 
1979). As is shown in equation 2.28 the general pressure drop equation for other 
installations is similar to equation 2.26 for the pressure drop in bends. Equation 2.28 
includes expansion loops, bends, valves and connections and the two phase multiplier from 
equation 2.23 is the same, what differs is equation 2.24 for the constant K. 

Two-phase multiplier for bends (Chisholm, 1979): 

𝜑𝑏2 = � 1
(1−𝑥)2� × �1 + �𝜌𝑙

𝜌𝑔
− 1� (𝐾𝑥(1 − 𝑥) + 𝑥2)�        2.24) 

Where: 

                                                         K =  1 + 2.2

1.6fhb�2+
r
di
�
                            2.25) 

Where r represents the bend radius, f the friction coefficient and hb is the equivalent 
length. The bend pressure drop is then: 

∆Pbends = dP
dz
�
lb
φb

2nbhbdi                   2.26) 

Single phase flow pressure drop: 
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  dP
dz
�
lb

= fρhV�2

2di
                    2.27) 

The general pressure drop equation for bends, expansion loops, valves and connections is: 

               dP
dz
�
l

= fρmV�2

2di
(φb

2nbhbdi + φeu
2neuheudi + φc

2nchcdi + φv
2nvhvdi)       2.28) 

Where nb, neu, nc and nv represent the number of bends, expansion units, connections and 
valves respectively. The equal length symbols are: hb, heu, hc and hv. The two phase 
multipliers for expansion units, connections and valves (φeu

2, φc
2 and φv

2) are similar to 
the two phase multipliers for bends.  
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3 Adjustment of methods for route 
optimization 

This chapter presents all the adjustments and additions, to the methods of chapter 2, of this 
this study. It should be clearly noted that all of the innovations of this study are contained 
in this chapter. In the first part of this chapter a new method of ranking points in a given 
topography based on visual effects is presented.  In the second and third parts are covered 
the adjustments and innovations relating to the distance transform based method and the 
genetic algorithm based method respectively. 

3.1 Distance transform visual effects ranking 
As previously stated the main goal of this study is to design an effective methodology to 
optimize the pipeline route with regards to visual effects.  In order for this to be possible, a 
logical first step is to obtain some sort visual effects ranking of the different locations in a 
geothermal area. In essence it is necessary, before any optimal path algorithm is used on a 
DEM of a geothermal area, to rank all the pixels with regards to the visual effects that a 
pipeline in that location would cause.  Distance transforms with their ability to register the 
shortest path from all points to the central point used in the transform present a way to 
achieve this. 

When a simple unconstrained distance transform is performed with only one object point, 
the shortest path from all points to this object points will be a direct line. That is, the 
shortest path registered by an unconstrained simple DT algorithm is the line of sight. Since 
the DT algorithm can be amended to register all the points between the object point and a 
selected point, the next step is for the algorithm to obtain information about the properties 
of all the points between the selected point and the object point.  

The proposed method of this study is to calculate a DT for every point in the image, from 
each point to multiple selected points, for whom it is desired to minimize the visibility of 
the pipeline (roads, towns, tourist sites, etc). Between each pixel and all the selected 
observation points, the DT algorithm records all the points between the respective points.  
For each pixel the height of all the points between the pixel (object point) and the 
observation points is recorded. The height of the line of sight is then calculated and then 
the algorithm calculates if at any point the line of sight from observation point to the object 
point is interrupted. If it is interrupted, that is if the object point is not visible from the 
observation point, the pixel gets a full score with regards to this observation point.  

When observing a pipeline from afar, it is clearly most visible when the line of sight is not 
interrupted and when the area behind the pipeline in the line of sight is clear, that is if the 
surface behind the pipeline is lower than the line of sight. The observer sees the pipeline 
much more clearly if only the horizon or some geography a substantial distance away from 
the pipeline is viewed behind it. Indeed in the Icelandic geothermal industry today, 
engineers responsible for route design attempt to first of all hide the pipeline as previously 
explained, and second of all if this is not deemed practical, to make sure that behind the 
pipeline (in terms of the line of sight) is an obstacle (close by) that interrupts the line of 
sight. It should be noted that this effort is manual and not optimized in any way. For this 
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ranking method, this is incorporated. If the line of sight is not interrupted, on either side of 
the point in question, the score of that point is proportional to the distance to the 
observation point. If it is farther away, the visibility declines and the score will be higher. 
The total score of each pixel is the sum of the score for this pixel due to each observation 
point. Algorithms 1-1 and 1-2 below display the algorithm of the visual effects ranking 
method. 

       𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑦𝑑𝑖𝑚 

                  𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑥𝑑𝑖𝑚 

                    𝑔𝑒𝑡 𝐷𝐸𝑀(𝑖, 𝑗) 

                   𝑓𝑜𝑟  𝑘 = 1 𝑡𝑜 𝑁𝑢𝑚𝑂𝑏𝑠  

                       [𝑟, 𝑠] = 𝑂𝑏𝑠𝑃𝑜𝑖𝑛𝑡(𝑘)  

                       𝑔𝑒𝑡 𝐷𝐸𝑀(𝑟, 𝑠)  

                       𝑟𝑢𝑛 𝑎 𝑠𝑖𝑚𝑝𝑙𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 [𝑟, 𝑠] 𝑎𝑛𝑑 [𝑖, 𝑗] 

                       𝐷𝑖𝑠𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚  

                       𝑅𝑜𝑢𝑡𝑒 = 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑝𝑎𝑡ℎ 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 [𝑟, 𝑠]𝑡𝑜 [𝑖, 𝑗] 

                       𝑆𝑖𝑔ℎ𝑡𝑅𝑜𝑢𝑡𝑒 =  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑙𝑖𝑛𝑒 𝑜𝑓 𝑠𝑖𝑔ℎ𝑡 𝑓𝑟𝑜𝑚 [𝑟, 𝑠] 𝑡𝑜 [𝑖, 𝑗] 

                       𝑖𝑓 𝑎𝑛𝑦 𝑅𝑜𝑢𝑡𝑒(𝑙) ≥ 𝑆𝑖𝑔ℎ𝑡𝑅𝑜𝑢𝑡𝑒(𝑙), 𝑙 = [1: 𝑠𝑖𝑧𝑒(𝑅𝑜𝑢𝑡𝑒)]  

                 𝑟𝑎𝑛𝑘(𝑘) = 10/𝑁𝑢𝑚𝑜𝑏𝑠 

           𝑒𝑙𝑠𝑒𝑖𝑓 𝑎𝑛𝑦(𝑆𝑖𝑔ℎ𝑡𝑅𝑜𝑢𝑡𝑒((𝑖 + 1): (𝑖 + 𝑡𝑜𝑙), (𝑗 + 1): (𝑗 + 𝑡𝑜𝑙)) ≥ 𝐷𝐸𝑀(𝑖, 𝑗) 

                            𝑟𝑎𝑛𝑘(𝑘) = 8/𝑁𝑢𝑚𝑜𝑏𝑠 

 𝑒𝑙𝑠𝑒 

                𝑟𝑎𝑛𝑘(𝑘) = 8 ∗ 𝐷𝑖𝑠𝑡
𝑀𝑎𝑥𝐷𝑖𝑠𝑡

 

           𝑒𝑛𝑑 

           𝑇𝑜𝑡𝑎𝑙𝑅𝑎𝑛𝑘(𝑖, 𝑗) = 𝑠𝑢𝑚(𝑟𝑎𝑛𝑘) 

       𝑒𝑛𝑑 

 𝑒𝑛𝑑 

Algorithm 1.1: Distance transform visual effects ranking 
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Algorithm 1.2: Distance transform visual effects ranking – visual representation 

Below is an example of how the algorithm functions. It is used on the sample area in figure 
3.1.1 where the red line represents the observation line (f.a.e a road) that is discretized into 
the observation points used in the algorithm. The results from the visual effects ranking 
used on the example in figure 3.1.1 are shown in figure 3.1.2. 
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Figure 3.1.1: Example topography and road used for visual effects ranking algorithm example, the 
results of which are depicted in figure 3.1.2. The red line represents the road that is defined as an 
observation area and discretized. The scale is from black – lowest elevation in this topography- to 
white – highest elevation in this topography. 

 

Figure 3.1.2: Visual representation of matrix resulting from using the visual effects ranking algorithm 
on the example depicted in figure 3.1.1. The scale is from dark blue – lowest visual effects score – to 
dark red – highest visual effects score. 
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3.2 Distance transform based method 
3.2.1 Constrained multiple weight distance transforms 

The problem of obtaining the optimal location for separators is essentially: for a given set 
of points, to find the point with the least total distance to all the given points. A geothermal 
area in utilization will have a number of boreholes and it is desirable to be able to select a 
separator location with the least total distance to the borehole, or a gathering point for a 
pipeline to carry the brine from all the boreholes to a separator located closer to the power 
plant. Alternatively it might also be desired to select the location of the power plant in a 
similar way.  A multiple weight distance transform algorithm can solve this problem as 
was covered in chapter 2.1.4.  

In geothermal areas, and in other areas where the same location selection procedure might 
be used, there are many areas that are inaccessible and therefore unavailable to be used as 
separator/power plant locations. For an example this might be lakes or rivers. There are 
also areas where it is not desirable to place a construction, such as very close to habited 
areas or a wildlife reserve.  Another important factor in the selection of locations for 
construction is the incline at the site. It is not practical to choose locations where the 
incline is very steep. Therefore it is desired to include in the method a way to exclude these 
areas from selection. In this study this is done by the introduction of an extension to the 
multiple weight distance transforms called constrained multiple weight distance transforms 
(CMWDT) and by the inclusion of an additional matrix for the inaccessible areas.  The 
extension of MWDT’s to include constraints is simple and mirrors the extension of regular 
distance transforms to include incline constraints. For every one of the component DT’s in 
the MWDT there are included incline constraints in the same way as shown in equations 
2.2 and 2.3, the only difference is that the incline constraints must be in both directions, 
away from and to the distance transform starting point. To include non-accessible areas a 
matrix is created with very high values for inaccessible areas and zero for accessible areas, 
this matrix is then added to the component matrices of the CMWDT. An example of a 
CMWDT is shown below in figures 3.2.1 and 3.2.2 
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Figure 3.2.1: Example topography used for a constrained multiple weight distance transform 
algorithm example, the visual representation of the results of which is shown in figure 3.2.2. The red 
dots in the image represent the set of points for whom the point with the least total distance is obtained 
in figure 3.2.2. The scale is from black – lowest elevation in this topography- to white – highest 
elevation in this topography. 

 

Figure 3.2.2 Visual representation of the results of using a constrained multiple weight distance 
transform algorithm on the example depicted in figure 3.2.1. The scale is from dark blue – points with 
the least total distance to the given set of points - to dark red – points with the highest total distance to 
the given set of points. 
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3.2.2 Multi-objective least cost distance transforms 

It is possible to modify the distance transform algorithm to incorporate cost functions (for 
an example in this case land costs and visual effects). This was first presented by Smith 
(2004) as the least cost distance transform algorithm (LCDT) and is extended here to 
incorporate multiple cost variables. It should be noted that the extension of the LCDT to 
include multiple cost function was suggested by Smith (2004) and therefore the 
contribution of this study to the LCDT is the implementation of that suggestion.  The costs 
of each variable need to be defined in each pixel and these costs are then multiplied to the 
incremental distance to each lattice point. The central function of a MLCDT with n cost 
variables is: 

       d0 = min(dk + LDM(k) ∗ (cost1(x, y) + cost2(x, y)+. . +costn(x, y)), d0)            3.1) 

The extension to the VTDT is: 

slope =  DEMk−DEM0
LDM(k)                       3.2) 

if( dk + LDM(k) ∗ (cost1(x, y)+. . +costn(x, y)) < d0  &&   slope < MSlope); 

then: d0 = dk + LDM(k)           3.3) 

Where dk is the grid point value of the k-th element in a chamfer mask, LDM(k) is the 
local distance metric, d0 the current value of the grid point at the center of the chamfer 
mask. DEMk represents the height of the digital elevation model at the grid point 
corresponding to the k-th element of the mask, DEM0 is the height of the digital elevation 
model at the grid point corresponding to the center element of the mask, costn(x, y) 
represents the n-th cost function and MSlope is the defined maximum allowed slope. The 
isolines generated by this algorithm are then equal cost isolines and the surface created is 
an accumulated cost surface. 

As mentioned in chapter 2.1.5 the MLCDT extension to DT’s offers the possibility of 
another approach to including inaccessible areas in the DT optimization. Instead of 
changing the value of the DEM in pixels corresponding to non-accessible areas, a pseudo 
cost function matrix can be created that represents non-accessible areas. The non-
accessible areas cost function matrix will have very high values for all the non-accessible 
areas. The ratio of the non-accessible area pixel value to the sum of the maximum values 
of all other cost functions multiplied by the maximum local distance metric value is set at a 
high value (say 99999) , in order to guarantee that non-accessible areas will not be chosen 
by the MLCDT. All grid points in the matrix corresponding to accessible areas will have 
the value 1. 

It is necessary when employing a MLCDT algorithm to pay heed to the relative weight and 
size of the different cost functions. It is in essence up the designer to normalize the cost 
functions and choose the relative weight coefficients. This is a known problem in multi-
objective optimization and one that is often without straightforward answers. This is a 
disadvantage of this method but it should not be too great. The method should still be an 
effective aid to the design process, even if some trial and error will be necessary. 
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Algorithm 2: Multi-objective least cost distance transform 

3.2.3 GA mdification of DT route 

The problem of modifying the route provided by the DT method with regards to expansion 
loops is problem that a genetic algorithm can handle well. The objective is to modify the 
route to include necessary expansion loops in order to account for the thermal expansion of 
the pipeline. The primary objective of the GA modification is to obtain the optimal placing 
for the expansion loop with regards to visual effects. Another objective of the modification 
is to regulate the frequency of bends in the route. Depending on the resolution of the DEM 
the DT route can vary considerably and for practical reasons it is not desirable for the 
pipeline to include bends at too frequent intervals. The first step in the route modification 
is to discretize the DT route. The input route into the GA is the route directly through the 
discretized points. The discretization resolution is an input into the algorithm. An example 
of this is shown in figure 3.3 below: 



33 

 

33 

 

Figure 3.3: Example of discretization of a pipeline route. The red line represents the original distance 
transform provided route that is discretized and whose number of bends is regulated. The blue line 
represents the route resulting from the genetic algorithm modification of the red distance transform 
provided route. 

The inputs into the GA algorithm are the route resulting from the discretization of the DT 
route, the number of expansion loops, maximum distance between expansion loops, size of 
expansion loops (the algorithm can also include the size of expansion loops as a variable 
with constraints on maximum and minimum size) and the discretization resolution. The 
GA is standard, employing binary tournament selection, two point crossover and mutation, 
with constraints on the expansion loop relative locations. For every expansion loop, its 
location on the route and on which side of the route it is placed are variables in the GA.  A 
constraint included in the GA is incline at the site of the expansion loop, which needs to be 
limited for obvious practical reasons. Therefore the GA used the DEM of the area to 
implement the incline constraint by way of a simple penalty function. Below in figures 
3.4.1 and 3.4.2 is an example of a VTDT route obtained for the Hverahlid geothermal area 
in Iceland and the subsequent GA modification of that route. 
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Figure 3.4.1: Visual effects isolines and optimal route obtained using the distance transform based 
method. The red line represents the optimal route and the scale is from dark blue – lowest value of the 
resulting VTDT matrix - to dark red – highest value of the resulting VTDT matrix. 

 

Figure 3.4.2: Digital elevation model of Hverahlíð geothermal area and optimal route obtained using 
the distance transform based method. The red line represents the optimal route and the scale is from 
dark blue – lowest altitude – to dark red – highest altitude. 
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3.2.4 Summary of distance transform based method 

The first step in the method is to load the digital elevation model of the geothermal area in 
question, and data about inaccessible areas – note that further work can be required with 
this data for it to be in the matrix form necessary to function with the MLCDT. Also data 
about borehole locations (and separator /power plant locations depending on available 
data) is required. The next step is to define the optimization parameters, which mainly 
means defining the maximum incline in both directions, and the maximum distance for the 
visual effects ranking. The borehole data is then used for the CMWDT algorithm to 
determine the optimal separator / gathering point locations.  In the fourth and fifth steps the 
observation points/areas are defined and discretized and algorithm 1 – the visual effects 
ranking algorithm - is run. The next step is to run algorithm 2 - the MLCDT algorithm and 
subsequently the simple GA is utilized to optimize the expansion unit locations. Finally the 
optimal route is displayed. 

 

Algorithm 3: Distance transform based method 

3.3 Genetic algorithm based method 
3.3.1 Motivation 

As will be discussed further in the case study of chapter four, the DT based method 
performs well in optimizing only with regards to the visual effects and it also offers the 
possibility of including multiple cost functions. There are however some limitations to the 
DT based method. First of all, if any objective is to be included in the optimization, it is 
required that it be represented in the form of a matrix where every grid point has the value 
of the cost function in the topographical location corresponding to that grid point. This is 
not always possible, f.a.e this makes it impossible to include the pipeline pressure drop as 
an objective. The pressure drop in geothermal pipelines is often significant and therefore it 
would be beneficial to the design process to be able to optimize both with regards to the 
visual effects of the pipeline and the pressure drop in the pipeline. It would especially be 
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beneficial to the design process to be able to choose from multiple options with regards to 
these objectives. Secondly in order to estimate the effectiveness of the DT based method it 
would be beneficial to compare the resulting route obtained using that method to routes 
obtained using a method known to be effective. Therefore the NSGA II is chosen as the 
basis for the second method of this study (Deb, Agrawal, Pretap, & Meyarivan, 2002). 

3.3.2 Genetic algorithm population generation using visual 
effects ranking and inaccessible areas 

Creating an initial population when using genetic algorithms for pipeline routing can 
represent a problem. The area in question can be a several square kilometers in size and 
with digital elevation models readily available with a resolution as low as (25x25)𝑐𝑚2 the 
possible pipeline routes are of a number too large for a normal genetic algorithm to be a 
practical method of solution. Therefore this study presents a method that constrains the 
individuals created within an area deemed to be reasonable. An individual will consist of 
M variables representing points the pipeline route passes through. The initial values of the 
variables in an individual are selected by using binary tournament selection within the 
constrained area. 

First of all an unconstrained distance transform algorithm is run from the start point of the 
pipeline (separator / gathering point) to the end point of the pipeline (power plant / 
separator). The route the DT algorithm registers, which for an unconstrained DT algorithm 
is a direct line, is used to discretize the x and y distance from the start point to the end 
point with the number of discretized points being equal to the number of variables M.  
Then for each individual a constrained area is formed for the M variables in the individual. 
For each discretized point in a given individual, a tolerance in both directions 
perpendicular to the direct line is defined and the square formed by the respective 
tolerances represents the constrained area for the initial value of its variables.  

The next step is choose the initial value for each variable in an individual, i.e where in the 
tolerance area each point in a pipeline individual is placed. The obvious choice here is to 
select at random. However since the optimization will include two main optimization 
objectives, visual effects and route length minimization, it is logical to also constrain the 
initial individuals to perform well with regards to visual effects. Therefore the method uses 
binary tournament selection for each variable in every individual to choose its initial value. 
For each variable binary tournament selection is performed, where the tolerance area for 
each variable represents the tournament selection population. In the binary tournament 
selection the point with lower visual effects ranking value is selected. In the example 
shown in Figure 3.5, the visual effects ranking matrix used to generate the initial 
individuals and three of the pipeline routes generated are shown. 
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Figure 3.5: Visual effects ranking matrix and initial pipeline routes (individuals) generated using the 
initial population generation algorithm. The scale is from dark blue – low visual effects ranking – to 
dark red – high visual effects ranking. The purple, yellow and red lines are the generated routes. 

3.3.3 Individuals and genetic operators 

The individuals in the GA optimization are made up of discrete GA variables, as seen 
above in how the initial individuals are generated, with the number of variables depending 
on the decided resolution. Some of the main decision points when utilizing genetic 
algorithms involve choosing between the many different variants available of the main 
genetic operators and then adapting those operators to the problem at hand. 

Two point crossover was chosen for use in this study by a method of trial and error. Many 
different kinds of crossover methods were tried during the route optimization for the 
Hverahlíð geothermal area where two point crossover was deemed perform best for this 
specific problem. The two crossover points are randomly chosen within defined parts of an 
individual. At both ends of an individual there are defined tolerances where the crossover 
points cannot be placed, also there is defined a minimum distance between the two 
crossover points. The crossover frequency of 0.9 was also chosen by a method of trial and 
error. 
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The mutation operator presents a challenge when optimizing pipeline routes with GA’s. 
Essentially the problem is not only to define the mutation frequency but also the method of 
mutation – the variation of the discrete variable positioning upon mutation.  In the solution 
method of this study not only the mutation position is random, but also the direction and 
size of mutation of the variable randomly chosen for mutation. What this means, for a 
given variable chosen for mutation, is that the direction the pipeline is stretched to and how 
much it is stretched, is up to a point random. The chosen variable is moved a random 
number of grid points (up to a defined maximum) in a direction orthogonal to the adjacent 
portion of the pipeline. The mutation frequency of 0.1 was chosen by a method of trial and 
error. 

3.3.4 Objective and penalty functions 

There are three different objective functions employed in the second method of this study. 
For the Hverahlíð case study presented in chapter 4 the optimization is done first with 
regard to route length and visual effects and secondly with regards to pressure drop and 
visual effects.  The pressure drop objective function is included as an optional part of the 
second method due to it possibly being beneficial to the design process to obtain and view 
the pareto front made up of visual effects and pressure drop. The final design could then 
conceivably take into account the trade-off between those two factors. 

Visual effects 

As previously stated, optimization of the visual effects of the pipeline is the main goal of 
this study. The NSGA II based method utilizes the distance transform visual effects 
ranking method presented in chapter 3.1 to provide the values of the visual effects of each 
pipeline. At the beginning of the algorithm the observation points/areas are discretized and 
the visual effects algorithm is run. The ranking matrix resulting from this is then used at 
every generation to calculate the visual effects objective function value. It should be noted 
that when the methods of this study are compared to each other, the resulting individuals 
have a different number of variables. For the first method the desired frequency of bends 
determines this number, which is then used for the comparison of the methods, as the 
pipeline resulting from the MLCDT algorithm is not really made up of a certain number of 
variables (or one variable for every grid point if looked at from another point of view). 

Route length and incline 

The most straightforward of the objective functions that the second method takes into 
account is the calculation of the route length. The distance between each variable of an 
individual to the adjacent variable is calculated and the route length is the sum of all the 
local distances between variables. As previously mentioned, in the geothermal industry 
today it is endeavored to design the pipeline routes monotonic with minimal incline in 
order to prevent slug flow conditions from forming in the pipeline. This is essentially 
incorporated and optimized in the first method of this study, the DT based method. For the 
second method of this study this is done in a similar way by keeping the route inclines in 
both directions under certain defined levels. A penalty function is included that draws 
down the route length objective function value if the defined maximum uphill or downhill 
gradients are exceeded. 

Pressure drop 
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As mentioned in chapter 3.3.1, the use of GA’s also offers the possibility of optimization 
with regards to minimizing the pressure drop in the pipeline (and therefore minimizing the 
drop in energy production). In the second method of this study pressure drop can be 
included as a special objective function in the NSGA II algorithm. The method uses the 
model presented in chapter 2.3 to calculate the pressure drop for each individual. As seen 
in chapter 2.3, for two different pipeline routes in the same geothermal area, with the same 
flow properties and the same start and end points, the total pressure drop will essentially be 
a function of the route length and the number of bends, expansion units and other 
installations. Therefore the route optimization with regards to first of visual effects and 
route length and second of all with regards to visual effects and pressure drop is not 
expected to result in very divergent routes. The benefit however, even though the 
objectives are similar, is to be able to use the pareto front of visual effects and pressure 
drop in the design process. The inclusion of this objective function is examined in chapter 
4.6. It should be noted that optimization with regards to pressure drop was not the main 
goal of this study and is therefore included in only a part of the Hverahlíð case study. 

Allowable area for each variable 

The tolerance area defined by the initial population generation method presented in chapter 
3.3.2 is used throughout the optimization at every generation. If the mutation operator 
causes a variable to move out of the defined tolerance area, the direction of mutation is 
simply reversed. F.a.e if the mutation caused the variable to move one grid point out of the 
tolerance area, instead it will move one grid point into the tolerance area. This is neccesary 
to prevent the variables from overlapping and gathering in the same plausible areas. 
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Algorithm 4: Genetic algorithm based method 
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4 Results 
For the purpose of estimating the effectiveness of the methods, they are implemented for 
the Hverahlíð geothermal area in Iceland. First of all in chapters 4.2-3 the NSGA II /DT 
and MLCDT methods will be implemented and in chapter 4.4 their results are compared to 
each other, the shortest route and the currently planned route. Subsuquently in chapter 4.5 
the addition of a random cost function to the MLCDT method is examined. Chapter 4.6 
looks at the inclusion of the pressure drop objective function into the NSGA / DT method. 

4.1 Geothermal area features and case study 
details 

In figure 4.1 below is shown the preliminary plan for the Hverahlíð geothermal area in 
Iceland and figure 4.2 shows the corresponding digital elevation model. The shortest route 
through the proposed work area is used for comparison with the NSGA II / DT method and 
the MLCDT method. Matlab was used to implement the methods and for all calculations 
regarding the case study. 

 

Figure 4.1: Preliminary plan by the power plant developers for the Hverahlíð geothermal area.  
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Figure 4.2: Digital elevation model representing the Hverahlíð geothermal area shown in figure 4.1. 
The scale is from blue – lowest altitude in the topography shown in figure 4.1 – to dark red – highest 
altitude in the topography shown in figure 4.1. 

The problem as described by the company building and running the geothermal power 
plant at Hverahlíð, Reykjavík Energy (Orkuveita Reykjavíkur) is to obtain the optimal 
gathering point for all the pipelines from the boreholes on the upper platform and to then 
design the optimal route for the pipeline (with regards to visual effects and other factors), 
from the gathering point to the separator situated adjacent to the power plant area. The 
route incline constraints are maximum downward incline: 10% and upwards: 0%. To 
increase the difficulty of the problem (lengthen the route from gathering point to separator) 
only the three boreholes on the left on figure 4.1 are chosen for the pipeline gathering point 
selection. The pipeline gathering point chosen with the MWDT algorithm is displayed in 
all of the results as the start point for the pipelines. 

4.2 Distance transform based method - results 
In figure 4.3 below are displayed the results of the visual effects ranking method for the 
Hverahlíð geothermal area. As can be seen in the figure the most visible areas are clearly 
the hillsides between the upper and lower platforms, along with other hills and elevated 
areas that are highly visible. As can be seen in figure 4.3, the method is effective in ranking 
the topographical areas with regards to visual effects, as areas with low visibility, f.a.e 
valleys and areas behind elevated sites receive a low ranking in all cases. Highly visible 
areas also in all cases receive a high ranking. 
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Figure 4.3: Hverahlíð visual effects ranking matrix obtained, using the visual effects ranking method 
presented in chapter 3.1, on the topography represented by the digital elevation matrix of the 
Hverahlíð geothermal area shown in figure 4.2. The scale is from dark blue – low visual effects ranking 
– to dark red – high visual effects ranking. 

Figure 4.4.1 below displays the optimal route with regards to visual effects obtained using 
the MLCDT algorithm with only the visual effects ranking cost function. Figure 4.4.2 
shows the route resulting from the GA modification to include expansion loops of the route 
in figure 4.4.1. 
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Figure 4.4.1: Digital elevation model of the Hverahlíð geothermal area and the optimal pipeline route, 
with regards to visual effects, obtained using the distance transform based method with regards to only 
visual effects. The red line represents the optimal visual effects route. The scale is from dark blue – 
lowest altitude – to dark red – highest altitude. 

 

Figure 4.4.2: Digital elevation model of the Hverahlíð geothermal area and the genetic algorithm 
modified optimal pipeline route, with regards to visual effects, obtained using the distance transform 
based method with regards to only visual effects. The red line represents the optimal visual effects 
route with expansion loops. The scale is from dark blue – lowest altitude – to dark red – highest 
altitude. 
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As can be seen in figures 4.4.1-2 above, the chosen route takes a close to direct route to a 
valley, which provides cover from the observation areas. The incremental movements of 
the route vary considerably - the route in 4.4.1 includes a large number of bends. As 
described in chapter 3.2.3 the number of bends is then limited and expansion loops are 
included and their locations optimized, as shown in figure 4.4.2. 

4.3 Genetic algorithm based method – results 
For the second method an initial population of 100 individuals is chosen for the first run. 
The mutation rate used is 0.1 and the crossover rate is 0.9. The generated pipelines include 
130 variables and in the DEM representation of the area there are approximately 115.000 
points. The visual effects ranking matrix shown in figure 4.3 is used for the visual effects 
objective function. Figure 4.5 shows the first front obtained after 5000 generations. In the 
run displayed in figure 4.7 the population size has been increased to 200. Figure 4.6 shows 
four of the first front pipeline routes obtained using this method and figure 4.8 shows the 
GA modification of one of the routes in figure 4.8. 

 

Figure 4.5: Objective function values of the first front in the pipeline population, generated using the 
genetic algorithm based method with the pipeline length and visual effects objective functions, after 
5000 generations with a population size of 100 individuals. The first front individuals are indicated by 
the blue circles in the figure. 
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Figure 4.6: Digital elevation model of the Hverahlíð geothermal area and four first front routes 
generated using the genetic algorithm based method with regards to visual effects and pipeline length. 
The black, yellow, purple and red lines depict the first front routes. The scale is from dark blue – 
lowest altitude – to dark red – highest altitude. 

 

Figure 4.7: Objective function values of the first front in the pipeline population, generated using the 
genetic algorithm based method with the pipeline length and visual effects objective functions, after 
5000 generations with a population size of 200 individuals. The first front individuals are indicated by 
the blue circles in the figure. 
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Figure 4.8: Digital elevation model of the Hverahlíð geothermal area and a first front route generated 
using the genetic algorithm based method with regards to visual effects and pipeline length, modified 
to include expansion loops. The red line depicts the first front route modified to include expansion 
loops. The scale is from dark blue – lowest altitude – to dark red – highest altitude. 

4.4 Comparison of method performance 
Method Length (DEM 

matrix units) – 6m 
Visual impact 
ranking / point 

MLCDT 281 22.7 
NGSA II – pipe 1 340 23.5 
NGSA II – pipe 2 358 22.2 
NGSA II – pipe 3 368 21.7 
NGSA II – pipe 4 415 21.5 
Area plan – 
proposed route 263 31.8 
Table 1: Comparison of routes generated by the genetic algorithm and distance transform based 
methods 

In table 1 above the visual impact ranking results are shown on a per-point basis. This is 
due the VTDT and NSGA II routes having a different number of varying points. As can be 
seen in table 1 the VTDT route performs better than all the NSGA II routes. It has a lower 
visual effects ranking than the NSGA II routes (1st, 5th, 9th and 14th routes from the 
second NSGA II run, from the left in figure 4.6).  It is also significantly shorter. This could 
result from there not being enough variables in the NSGA II optimization or the multitude 
of possible routes can be preventing the NSGA II method from obtaining the true pareto 
optimal front, indeed as figures 4.5 and 4.7 show the obtained front is not truly pareto 
optimal. 
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4.5 MLCDT with and additional cost function 
To examine the ability of the MLCDT algorithm to handle multiple cost functions, a 
different gathering point (than in the previous part of the case study) is chosen and the 
algorithm run first of all with only the visual effects cost function and secondly with an 
added cost function. The second cost function is essentally a randomly generated matrix of 
the same size as the visual effect ranking matrix. The reason for using a randomly 
generated matrix is to examine whether the optimization will result in a different optimal 
route. 

 

Figure 4.9.1: Visual effects isolines and optimal route at Hverahlíð, generated using the distance 
transform based method with regards to only the visual effects objective function. The red line depicts 
the optimal route and the scale is from dark blue – lowest value of the resulting VTDT matrix - to light 
blue– highest value of the resulting VTDT matrix. 
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Figure 4.9.2: Digital elevation model of the Hverahlíð geothermal area and optimal route at Hverahlíð 
generated using the distance transform based method with regards to only the visual effects objective 
function. The left red line depicts the optimal route and the right vertical red line depicts the road 
defined as the observation area. The scale is from dark blue – lowest altitude – to dark red – highest 
altitude. 

 

Figure 4.10.1: Visual effects isolines and optimal route at Hverahlíð, generated using the distance 
transform based method with regards to both the visual effects  and random objective functions. The 
red line depicts the optimal route and the scale is from dark blue – lowest value of the resulting VTDT 
matrix - to light blue– highest value of the resulting VTDT matrix. 
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Figure 4.10.2: Digital elevation model of the Hverahlíð geothermal area and optimal route at 
Hverahlíð generated using the distance transform based method with regards to both the visual effects 
and random objective functions. The left red line depicts the optimal route and the right vertical red 
line depicts the road defined as the observation area. The scale is from dark blue – lowest altitude – to 
dark red – highest altitude. 

Figures 4.9.1-2 and 4.10.1-2 above show that the inclusion of an additional random cost 
function has significantly altered the route in some areas. Upon closer inspection the 
majority of the route shifts by at least one grid point, this is due to effect of the second cost 
function, which even though it is random and therefore not expected to alter the route 
radically, shifts the results of repeated applications of equations 3.2-3 when applying a 
mask to a grid point. 

4.6 Inclusion of a pressure drop objective 
function 

In order to examine the inclusion of a pressure drop objective function in the based 
method, a theoretical example is set up (not reflecting the conditions at Hverahlíð). Table 2 
shows the parameters used in the implementation of the GA based method for this 
example. The respective start and end points of the routes are the same as for the main part 
of the case study in chapters 4.1-5. Note that the purpose of this example is not to 
accurately predict the pressure drop of the pipleines at Hverahlíð, rather to theoretically 
examine the inclusion of the pressure drop objective function in the GA based method 

 

 

 

 

T 150°C 
x 0,3 
d 0,4m 
m 40kg/s 

Table 2: Conditions for pressure drop calculations example 
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Using equation 2.18 the calculated void fraction is 0,87. The calculated static pressure 
gain, due to the lower altitude of the separator location than the pipeline start point, is 0,89 
bars. This explains why the total pressure drop of the pareto optimal routes ranges from -70 
to 60 mbar, as shown in figure 4.12. Figure 4.11 below shows three of the reccomended 
routes (numbers 1, 5 and 9 from the left in figure 4.12). The routes are all very similar to 
the routes shown in figure 4.6. This is, as was covered in chapter 3.3.3, expected due to the 
pressure drop being for the most part a function of the total pipeline length. 

 

Figure 4.11: Digital elevation model of the Hverahlíð geothermal area and three first front routes 
generated using the genetic algorithm based method with regards to visual effects and pressure drop. 
The yellow, purple and red lines depict the first front routes. The scale is from dark blue – lowest 
altitude – to dark red – highest altitude. 
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Figure 4.12: Objective function values of the first front in the pipeline population, generated using the 
genetic algorithm based method with the pipeline length and pressure drop objective functions, after 
5000 generations with a population size of 200 individuals. The first front individuals are indicated by 
the blue circles in the figure. 
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5 Conclusions and future work 
The case study presented above shows that both the methods presented by this study are 
effective in obtaining pipeline routes with significantly less visual effects than 
conventionally designed pipeline routes. The distance transform based method used in this 
study and the visual effects ranking system introduced offer a good, functional way to 
design pipeline routes with regards to minimal visual impact while also keeping the route 
length reasonable. The results show that both methods are successful in designing a route 
minimizing the visual impact of a pipeline while meeting design constraints. This is shown 
well in how the method differs from and performs better than the route originally proposed 
by the Hverahlíð geothermal area planners. Using the DT based method, there is virtually 
no upper limit on the level of detail achievable designing the optimal route. The only limit 
is that of the resolution of the DEM used.  
 

The genetic algorithm based method performs worse than the distance transform based 
method and this indicates that the pareto front obtained by the GA based method is not the 
“true” pareto optimal front, but the method is however promising due to the possibility of 
including further cost functions. The MLCDT algorithm requires further work to be able to 
optimize with regards to more than one cost function. The addition of expansion loops was 
successfully optimized after the route optimization in both methods. Proposed future work 
in the development of this method is to include the expansion loop sites and geometry as 
variables in the NSGA II optimization. The MLCDT algorithm needs further work to be 
able to better handle multiple cost functions. 
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