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ABSTRACT 

A method for global optimization to determine 

parameters in a model for multiphase flow in porous 

media is presented. It involves a search for first order 

saddle points and minima of an objective function 

obtained from the iTOUGH2 code and has been 

implemented within the EON software for distributed 

and cloud computing. While it can be applied to 

problems with a large number of parameters, the 

application presented here is a simple, illustrative 

model of the Laugarnes geothermal area in 

Reykjavík, Iceland, calibrated in a two-dimensional 

parameter space. 

INTRODUCTION 

The development of reservoir models often 

involves inverse modeling, which consists of 

estimating model parameters from 

measurements of the system response made at 

discrete points in space and time. The difference 

between the model calculation and the data at 

the calibration points is measured by the 

objective function. The objective function can, 

for example, be the sum of squares of the 

difference between calculated model output and 

field measured data. The estimation of model 

parameters is then formulated as an optimization 

problem where the goal is to find the parameters 

value that minimize the objective function. 

Even for small models with only a few 

parameters, the objective function can have 

more than one minimum. This is illustrated in 

figure 1, where a 1D cut through an objective 

function for the model described below. Within 

the interval shown, three local minima appear.  

The occurrence of multiple minima is more 

likely in models with a larger number of 

parameters.  The main task then becomes that of 

finding the global minimum of a function among 

the several local minima.  This is a very 

challenging problem. It is also important to 

know whether additional local minima, which 

are insignificantly higher (compared with 

estimated error bars), are present and could 

represent equally good parameter-sets for 

practical purposes. 

 

Figure 1. A 1-dimensional cut through the objective 

function for the model system studied 

here, illustrating the problem of multiple 

local minima.  The goal is to find the 

global minimum (vicinity of -14.1) among 

the local minima. 

Global optimization of functions of many 

variables is often carried out using simulated 

annealing algorithms that mimic roughly the 

annealing of materials.  The 1983 article by 

Kirkpatrick, Gelatt and Vecchi (Kirkpatrick 

1983) illustrated how such an approach could be 

applied to circuit design. This article has since 

been cited extensively and the method applied to 

many different optimization problems. There, 

the objective function is taken to represent an 

'energy' of the system, and a fictitious 

temperature is introduced. 
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By applying a Monte Carlo algorithm the 

annealing process can be simulated by accepting 

or rejecting changes in the arguments of the 

objective function. The reason for introducing 

temperature is to introduce and control the 

probability of accepting increases in the 

objective function since they may be an essential 

intermediate step to ultimately reach lower 

function values. 

A central issue in simulated annealing 

calculations is the ‘time’ scale of the ‘cooling’ 

of the system from high temperature to zero 

temperature. The lower the cooling rate is, the 

more likely the method is to find the global 

minimum.  For a given amount of computational 

effort, a method that can simulate longer time 

intervals is therefore more likely to reach the 

global minimum.  

A method for long time scale simulations, 

known as adaptive kinetic Monte Carlo 

(AKMC) algorithm has recently been developed 

(Henkelman 2001) in the context of transitions 

in atomic scale systems. It can be used for global 

optimization in a way that is analogous to 

simulated annealing (Pedersen 2012). The 

important feature of this approach is the ability 

to move from one local minimum of the 

objective function to another via paths that lie 

close to first order saddle points. The saddle 

points are found using the minimum mode 

following method (Henkelman 1999). The 

kinetic Monte Carlo algorithm is used to select 

between the determined possible paths through 

different saddle points.  Alternatively, the path 

lying through the lowest saddle point and 

leading to a new local minimum can be chosen, 

in which case a temperature does not need be 

defined (Pedersen 2012). The advantage of this 

algorithm over the original simulated annealing 

algorithm is that fewer objective function 

evaluations are needed to move from one local 

minimum to another.  Also, the objective 

function only gets evaluated for parameter 

values for which its value is relatively small and 

the regions with excessively high values of the 

objective function are avoided. 

An application of this algorithm to geothermal 

reservoir modeling is presented here. 

CONCEPTUAL AND NUMERICAL 

MODEL  

Laugarnes is a low temperature field in Iceland, 

which has been described in some detail by 

Thorsteinsson and Eliasson (1970). This 

geothermal area is fed by three aquifers. Aquifer 

A with water of 110-120 
o
C, Aquifer B with 

water of 135 
o
C and Aquifer C with water of 

temperature of 146 
o
C. Tuffs and sediments act 

as aquicludes between the aquifers. The active 

reservoir underlies an area of 5 km
2
 within the 

city of Reykjavik and has a base temperature 

about 145 
o
C (Bodvarsson 1978). Prior to 

exploitation the hydrostatic pressure at the 

surface in the geothermal field was 6-7 bars 

(Einar Gunnlaugsson et al., 2000) and about 10 

l/s of 88 
o
C water issued in free flow from the 

hot spring. (Thorsteinsson and Eliasson 1970). 

 

Figure 2. Aerial partial view of Voronoi mesh used 

to model the area. Red and blue circles 

production and observation wells 

respectively. 

To build a simplified model for this area a 

mainly hexagonal Voronoi mesh with 38 volume 

elements, covering an area of 12 km
2
, have been 

created, see figure 2. The model extends to 2235 

m depth in 8 layers. There is a single volume 

element at layer 1 and at layer 8, which both are 

inactive and represent the reservoir top and 

bottom. Layers 3, 5 and 7 represents aquifer A, 

B and C respectively. And layers 2, 4 and 6 

represent aquicludes and were assigned lower 

permeability values, see figure 3. 
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Figure 3. View of layers used in the model. Colors 

correspond to different material 

properties. 

A 3D representation of the geometry of the 

model can be seen in figure 4. The red point at 

the surface represents the location of an 

observation well, and the blue point represents 

the location of a hot spring thus a well on 

deliverability was defined there acting as a sink. 

 

Figure 4. 3D view of the model. Colors correspond 

to different material properties The blue 

and red points at the top layer represent 

the location of hot spring (water sink) and 

an observation well respectively. 

Two types of sources have been included: first, a 

mass source located at the bottom of the 

reservoir was positioned in the area where the 

upflow is thought to be located. Second, heat 

sources where placed at scattered positions on 

the bottom, see figure 5. 

 

 

Figure 5. Semi-transparent 3D view of the model. 

The red starts at the bottom layer 

represents the heat sources distribution 

and the green start signifies a water 

source. 

Six calibration points are used, see figure 6. The 

red line in figure 6 represents the observation 

well and it has 4 calibration points, at 4 different 

depths. Starting from the top, point 1 represents 

pressure at the op of reservoir. Points 2, 3 and 4 

represent temperature in aquifer A, B and C 

respectively.     Points 5 and 6 are in the same 

location and represent water flow rate from the 

hot spring and enthalpy of its water. 

 

Figure 6. Semi-transparent 3D view of the model. 

From the top, points from 1 to 4 in red 

color and 5 to 6 in blue color are 

calibration points. Points 5 and 6 coincide 

in the same position. 

This model has been constructed to represent a 

realistic system but at the same time be simple 

enough to allow tests and studies of the 

performance of the optimization algorithm. 

Focus is mainly on the inverse modeling so it 

was decided to generate the data at the 

calibration points, add some Gaussian noise and 

then use this as a representation of the real data 

for the natural state calibration process. The 
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fixed parameters in the model, those that will not 

change during the optimization, were chosen 

reasonably in order to produce a model result 

close to what already has been reported for this 

region. 

By fitting the generated data instead of what is 

measured has the main advantage that the 

location of the minimum is known beforehand, 

which makes the analysis of the optimization 

algorithm simpler. 

OBJECTIVE FUNCTION 

The objective function may be close to quadratic 

or highly nonlinear in nature; it may be 

continuous, differentiable, and smooth, or 

discontinuous, not differentiable, and rough. For 

a nonlinear model the topography of the 

objective function away from the minimum 

becomes intricate, making it difficult for the 

optimization algorithm to iteratively proceed 

towards the minimum (S. Finsterle, 2007). 

The two-dimensional optimization problem 

addressed here originates from the calibration of 

the simplified model described above. In this 

case the objective function is the squared 

deviation between ‘observed’ and calculated 

pressure at calibration point 1, temperature at 

calibration points 2 to 4 and water flow rate and 

water enthalpy at calibration points 5 and 6 

respectively. Figure 7 shows the shape of the 

objective function in the parameter space 

defined by logarithm of mass generation rate 

(log(q)) and logarithm of permeability (log(k)) 

of aquiclude layers obtained using the Grid 

Search Method implemented in iTOUGH2. 

It should be noticed that within the interval for 

the permeability between -17.0 and 15.5 the 

objective function is not smooth. It furthermore 

shows some point-like discontinuities that 

probably are caused by numerical instabilities in 

the forward model. Thus, focus will mainly be 

for the smooth regions. 

The contour lines in figure 8 show, it should be 

noticed that the objective function has three 

minima. The global minimum is known to be 

located for log(k)=-14.00 and log(q)=1.00, (will 

be referred as M2), but two local minima also 

occurs, one at log(k)=-16.46 and log(q)=1.10 

(M1) and another at log(q)=12.79 and 

log(q)=1.76 (M3).  Between minima M1 and M2 

there is a first order saddle point (SP1) and 

between M2 and M3 there is another first order 

saddle point (SP2). 

 

Figure 7. The objective function for the simplified 

model, as a function of two variables: 

log(generation rate) on the x-axis and 

log(permeability) on the y-axis. Between -

17.0 and 15.5 it shows some point-like 

discontinuities that probably are caused 

by numerical instabilities in the forward 

model 

Both local minima correspond to a significantly 

higher value of the objective function, but they 

will attract minimization paths started from 

nearby regions in parameter space.  While it can 

easily be discounted in this simple two-

dimensional problem, this can be a severe 

problem for models involving many parameters. 

Furthermore more complex problems are also 

likely to have more local minima, several of 

which can have reasonable values of the 

parameters. 

FINDING THE NEAREST LOCAL 

MINIMUM 

The Levenberg-Marquardt minimization 

algorithm is found to perform well for most 

iTOUGH2 applications (S. Finsterle, 2007). It 

can be made to converge efficiently by selecting 

appropriate values for convergence parameters, 

but as for most other local minimization 

algorithms it only strives to converge to the 

minimum closest to the initial guess of the 

model parameters.  

Figure 8 shows the solution paths, for 

Levenberg-Marquardt minimization algorithm, 

starting from four different initial guesses.  If the 

initial guess is in vicinity of the global minimum 

the method converges to it. But, if the initial 
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guess is not in the proximity of the global 

minimum, the method converges to the higher 

local minima. A region of parameter space leads 

to convergence to local minima. 

 

Figure 8: Contour lines of the objective function 

and solution paths of Levenberg-

Marquardt minimization algorithm in the 

2D parameter space log (g)-log(k), 

starting from 4 different points. The 

squares represent initial guesses that lead 

to convergence to local minima. The 

circles represent initial guesses that lead 

to convergence to the global minimum. 

This illustrates the possibility that a 

minimization from an initial guess of the 

parameter values can lead to convergence 

to a local minimum with a substantially 

higher value of the objective function than 

the global minimum. 

This example illustrates the need for exploring 

the objective function surface beyond just 

finding the local minimum nearest to the initial 

guess.  While it is easy to envision setting up 

enough minimization calculations to cover a fine 

grid of possible initial guesses for all parameters 

when the number of parameters is small, this 

will quickly become unmanageable as the 

number of parameters increases. 

SEARCHING FOR MULTIPLE MINIMA 

The task of finding the global minimum of a 

function with multiple local minima is 

challenging and the only method that is 

guaranteed to work is the simulated annealing 

method requiring an impossibly slow cooling 

rate and impossibly large computational effort. 

Therefore a more efficient method to deal with 

objective functions with multiple local minima 

is desired. 

The AKMC algorithm can be applied to explore 

functions with multiple minima. The basic 

feature of the algorithm is the ability to climb up 

the objective function surface to home in on 

regions around first order saddle points. The 

algorithm, thereby, gains the ability to reach new 

minima adjacent to a known minimum.  In a 

simulated annealing formulation the new 

minimum can be accepted or rejected based in 

the difference in the values of the objective 

function and the current value of the temperature 

(Pedersen 2012).  Alternatively, a map of the 

minima can be generated, with each additional 

minimum selected based on the height of the 

first order saddle point on the path to the 

minimum. 

The AKMC algorithm works by the following 

principle (for more detailed description see 

Henkelman 2001 and Pedersen 2011).  For a 

given local minimum, several saddle point 

searches are carried out (on the order of 10 to 

100) starting from a random change in the model 

parameters. To initialize each search a small 

change in the parameter values at the minimum 

is applied generated from a Gaussian random 

distribution.  For each of the perturbed 

parameter values, the minimum mode following 

method (Henkelman 1999) is then used to climb 

up the objective function surface and home in on 

a first order saddle point. Such searches are 

continued until additional searches do not reveal 

new low-lying saddle points using a 

probabilistic confidence estimate (Xu 2008). 

The most important aspect of the AKMC 

method is the slow increase in computational 

effort with the increase in the number of 

parameters. This method was originally 

developed to search for transition mechanism 

and find stable arrangements of atoms in solids.  

It has been applied successfully to systems with 

thousands of parameters (atom coordinates in 

those cases).  It has been implemented in 

software for distributed and cloud computing 

(Pedersen 2010) making it possible to use 

multiple CPUs simultaneously connected by 

simple internet connection.  Idle time on 

computer clusters or personal computers can be 

used to carry out the calculations.  The saddle 

point searches are farmed out to the various 

CPU and the saddle points and minima found 

are reported back to the server which keeps track 

of them. 

Calculations using this algorithm for the 

simplified test problem were carried out, one 

starting from an initial point close to the global 

minimum and another from an initial point close 

to a local minimum.  In either case, both the 
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global and the local one are found, (to within a 

chosen tolerance in the gradient).   
 

 

Figure 9: AKMC minimization path from initial 

guess represented as a blue square. It 

converges to the global minimum (path in 

blue), given an initial displacement (black 

dotted line) it climbs up to converge to the 

saddle point (path in red), given a 

displacement from saddle point (black 

dotted line) it converges also to the local 

minimum. 

Figure 9 shows the minimization path using 

AKMC. From the initial guess (-15.0, 0.6) 

represented in the figure as a blue square it 

converges to the global minimum through the 

blue path. Then, after a small increment in the 

parameter values, it starts a climb up the 

objective function surface and converges on a 

first order saddle point to a rather loose 

tolerance. After a displacement along the mode 

for which the saddle point is a maximum, a 

minimization converges to the adjacent local 

minimum. 

Similarly, figure 10 shows the minimization 

path using a different initial guess, (-12.9, 1.61). 

It converges to a local minimum and after a 

displacement, it climbs up to converge to a 

saddle point. Another displacement is given 

from the saddle point and it converges then to 

the global minimum. 

Both paths go through the vicinity of the first 

order saddle point.  The tolerance for 

convergence, onto the saddle point can be large 

since the precise value of the objective function 

there is not important.  The fact that the paths 

taken from one minimum to another go through 

the vicinity of saddle points means that 

parameter regions with very large values of the 

objective function are avoided, which can be 

advantageous since unphysical parameters can 

lead to ill defined values of the objective 

function and large computational effort. 

 

Figure 10: AKMC minimization path from initial 

guess represented as a blue square. It 

converges to the local minimum (path in 

blue), given an initial displacement (black 

dotted line) it climbs up to converge to the 

saddle point (path in red), given a 

displacement from saddle point (black 

dotted line) it converges also to the global 

minimum. 

DISCUSSION 

The problem of finding the global minimum 

of an objective function that has many local 

minima is a challenging one and the only 

method that is guaranteed to work is the 

simulated annealing method, however, with an 

impossibly slow cooling rate requiring infinite 

computational effort (Kirkpatrick 1983). For 

object functions that are continuous and 

differentiable the gradient can be used to 

navigate on the objective function surface so as 

to move from one local minimum to another.  

This assumes the minima can be associated with 

basins of significant extent and that the surface 

is not ‘rippled’.  If these conditions are met, the 

AKMC method with systematic coarse graining 

(Pedersen 2012) can be used to map out the local 

minima and not only give an estimate of the 

global minimum (as the lowest minimum found) 

but also give an estimate for the uniqueness of 

the solution found and the most important parts 

of the objective function.  
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