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a b s t r a c t

The objective function used when determining parameters in models for multiphase flow in porous
media can have multiple local minima. The challenge is then to find the global minimum and also to
determine the uniqueness of the optimized parameter values. A method for mapping out local minima to
search for the global minimum by traversing regions of first order saddle points on the objective function
surface is presented. This approach has been implemented with the iTOUGH2 software for estimation of
models parameters. The methods applicability is illustrated here with two examples: a test problem
mimicking a steady-state Darcy experiment and a simplified model of the Laugarnes geothermal area in
Reykjavík, Iceland. A brief comparison with other global optimization techniques, in particular simulated
annealing, differential evolution and harmony search algorithms is presented.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The development of reservoir models often involves inverse
modeling, i.e. an estimation of model parameters by fitting calculated
values of the response of the system to measurements at discrete
points in space and time. The difference between the model calcula-
tion and the measured data at the calibration points can be
represented by an objective function of the model parameters. The
task of estimating the best set of model parameters is thereby
formulated as an optimization problem where the goal is to
determine the parameter values that minimize the objective func-
tion. Even for models with only a few parameters, the resulting
objective function can have more than one minimum. This is
illustrated in Fig. 1, which shows a one-dimensional cut of an
objective function for a geothermal reservoir model described below.
Within the parameter interval shown, three local minima are
present. The occurrence of multiple local minima is more likely in
models with a larger number of parameters. Hence, the task becomes
to find the global minimum of the objective function among several
local minima. This is a challenging problem. Furthermore, it is
important to know whether additional local minima, with only
insignificantly higher objective function values are present since they

could, for practical purposes, represent nearly as good parameter
values as the global minimum.

Numerical algorithms for optimization can be broadly categorized
into local optimization methods and global optimization methods.
Local optimization algorithms involve an iterative process where
starting from some initial guess, new parameter values are found
so as to lower the value of the objective function. Such algorithms
only find local minima, typically the local minimum nearest to the
initial guess. Typically, local optimization methods rely on the
evaluation of the gradient of the objective function. Some exam-
ples are steepest descent, conjugate gradient, Quasi-Newton and
Levenberg–Marquardt methods. By carrying out multiple mini-
mizations starting from different initial guesses, such methods can
be used to find the global minimum but this becomes an
inefficient procedure when many parameters are varied.

Global optimization algorithms, on the other hand, attempt to
find the global minimum by also allowing the increase of the
objective function during the iterative procedure. Some examples
are, simulated annealing using Markov chain Monte Carlo meth-
ods and evolutionary algorithms such as differential evolutionary,
harmony search, and particle swarm optimization. These methods
do not make use of the gradient of the objective function and tend
to converge more slowly to minima of the objective function, but
have the advantage over local optimization methods that they can
identify the global minimum. Three of these algorithms will be
briefly described here, the simulated annealing, differential evolution
and harmony search algorithms. These are implemented in the
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iTOUGH2 software, and will be compared with the global optimiza-
tion method proposed here.

Simulated Annealing (Kirkpatrick et al., 1983) is an iterative
procedure where an initial guess of the parameter values is iteratively
updated with random increments and a selection criterion until a
termination condition is reached. There, the objective function is taken
to represent an ‘energy’ of the system, and a fictitious temperature is
introduced. The temperature is introduced to control the probability of
accepting increases in the objective function as an intermediate step to
ultimately reach lower function values. A central issue in simulated
annealing calculations is the ‘time scale’ of the cooling of the system
from high temperature to zero temperature. The slower the cooling
rate, the more likely the global minimum is found, but the computa-
tional effort becomes larger. It has been shown that in the impossible
limit of infinitely long simulations with infinitesimal cooling rate, the
method is guaranteed to give the global minimum (Haario and
Saksman, 1991; Tsallis and Stariolo, 1996). For a given amount of
computational effort, an implementation that can simulate a longer
time interval is, more likely to reach the global minimum.

The Differential Evolution algorithm (Storn and Price, 1997)
uses a randomly generated initial population, preferably covering
the entire parameter space, which is then modified by differential
mutation and crossover along with a selection criterion to find the
minimum of the objective function. It has emerged as one of the
simplest and most efficient techniques for solving global optimiza-
tion problems. The method has been applied to diverse domains of
science and engineering, such as mechanical engineering (Joshi and
Sanderson, 1999), chemical engineering (Wang and Jang, 2000),
machine intelligence, and pattern recognition (Das et al., 2008).
Some weaknesses of the method have been identified (Lampinen
and Zelinka, 2000). Furthermore, the performance of the method
deteriorates as the number of parameters increases (Ali et al., 2012).
Several suggestions for improving its performance have been
proposed (Ali and Pant, 2011).

Harmony search (Geem et al., 2001) is also a population-based
optimization algorithm using a stochastic random search (Lee and
Geem, 2004). It has been applied to a wide variety of optimization
problems (Geem et al., 2002, 2005; Kang and Geem, 2004; Kim
et al., 2001; Lee and Geem, 2004). However, problems with the
method, such as the need for parameter tuning, have been a topic
of much research over the last 10 years where improvements have
been proposed (Fourie et al., 2013).

The global optimization method presented here can be consid-
ered as a descendant of a method for long time scale simulations of
atomic scale models of solids, known as adaptive kinetic Monte
Carlo (AKMC) (Henkelman and Jónsson, 2001). The AKMC method
has been successfully applied to atomic scale problems in solid-
state physics and chemistry, see for example: (Henkelman and
Jónsson, 2003; Karssemeijer et al., 2012; Pedersen et al., 2009a,
2009b; Pedersen and Jónsson, 2010). There, the time evolution is
described by visiting local minima on the energy surface and
identifying transitions by searching for first order saddle points
on the objective function surface (Henkelman and Jónsson, 1999).
Here, we modify the AKMC method to adapt it better to global
optimization (Pedersen et al., 2012). The method, which we will
refer to as global optimization using saddle traversals (GOUST) is
described in detail below. It has been implemented in the EON
software (Pedersen and Jónsson, 2010), which makes it possible to
carry out the calculations using distributed and cloud computing

2. The GOUST method

The GOUST method relies on a fast way to identify first order
saddle points on the objective function surface. We therefore first
describe briefly the tool used for this purpose. A more detailed
description is given in Henkelman and Jónsson (1999).

2.1. Minimum mode following

Let the number of variables of the objective function (param-
eters in the model to be fitted) be denoted by N. The objective
function can be denoted as

f : ℝN- ℝ ð1Þ
this defines a surface in N-dimensional space. The function is
assumed to be differentiable. The extremal points where the
gradient vanishes, ∇f¼0, and the function value is low are of
particular interest as these are local minima and low lying saddle
points. To distinguish between these two kinds of extrema, the
matrix of second order derivatives (the Hessian matrix, Eq. (2)) can
be used. The Hessian has only positive eigenvalues at a local
minimum, whereas one of the eigenvalues is negative at a first
order saddle point (SPs).

Hij ¼
δ2f

δxiδxj
ð2Þ

To locate SPs, it is assumed that the gradient ∇f of the objective
function can be evaluated readily (recent developments in auto-
matic differentiation (see Gregory et al., 1997) could prove valu-
able in this context), but second derivatives are not needed. The
method used to find SPs involves a minimization using a trans-
formed gradient where the component along the minimum mode
of the Hessian has been reversed

∇f ef f ¼∇f �2ð∇f ν̂λÞν̂λ ð3Þ
here, ν̂λ is a normalized eigenvector corresponding to the mini-
mum eigenvalue, λ, of the Hessian. This projection (Eq. (3)) locally
transforms the gradient in the vicinity of a SP to a gradient
characteristic of the vicinity of a minimum. A number of local
minimization methods can then be used to converge on SPs when
∇f ef f is used as input, for example the conjugate gradient method.
This will be referred to as the minimum mode following (MMF)
method. It is important to note that only the minimum mode of
the Hessian matrix is required here. The minimum mode vector
can be estimated efficiently using either the dimer method
(Henkelman and Jónsson, 1999) or the Lanczos method (Lanczos,

Fig. 1. A one-dimensional cut of the objective function for a geothermal reservoir
model of the Laugarnes area described in Section 4. The logarithm of the
permeability is varied. In addition to a global minimum (near �14.1), two local
minima are present (near �16.5 and �13.0).
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1950) where only first order derivatives are required. The full
Hessian does not need to be computed.

Once a SP search has exited the region around a local minimum
where all eigenvalues are positive, a steepest descent search path
is stable and deterministic. That is, a MMF search starting from a
point outside the positive region will converge on a particular SP.

2.2. The algorithm

The GOUST algorithm is based on the principle of finding new
local minima on the objective function surface by climbing up from
known minima so as to identify SPs, and then sliding down from
there using a local minimization algorithm. For a given local mini-
mum, several SP searches are carried out starting from slightly
perturbed values of the variables. For each of the perturbed para-
meter values, the MMF method is used to climb up the surface and
converge onto a SP. After a SP has been located, the adjacent local
minima are found. This is done by displacing the system along the
minimum mode in both directions from the SP, followed by a local
minimization to slide down to the minima. The method is presented
in greater detail below.

GOUST algorithm:

1. From the parameter values, x0, provided by the user as an
initial starting point, a local minimization is carried out to
bring the system to a local minimum. A list of minima is
initialized by storing this local minimum, xm0, and the corre-
sponding value of the objective function, f(xm0).

2. n new parameter values, xr1, xr2, … xrn, are generated as starting
points for saddle point searches by applying small random
displacements, sampled from a Gaussian distribution, to the
parameter values at the minimum. The displacements are
small and all parameter sets xr1, xr2, … xrn are in the vicinity of
the minimum. (The superscript “r” stands for random).

3. From each parameter set, a saddle point search using the MMF
method is conducted.

4. Step 2 and step 3 are repeated until a predetermined number
of unsuccessful attempts to locate new saddle points has been
exceeded.

5. This minimum is marked as visited.
6. All saddle points found are stored in the list of saddle points,

xsp1, xsp2, …xspn and f(xsp1), f(xsp2), … f(xspn). Each saddle point
is listed only once.

7. The saddle point (which has not been sampled) with the
lowest value of the objective function is selected, and a
displacement along the minimum mode vector made in both
directions from the saddle point followed by local minimiza-
tion to determine the two adjacent minima, xm1 and xm2.

8. The minima, xm1, xm2 and f(xm1), f(xm2), are stored in the list of
minima (each minimum only listed once).

9. This saddle point is marked as sampled.
10. The lowest minimum in the list of minima that has not been

visited is selected and steps 2 through 9 repeated until (a) all
saddle points have been sampled, (b) all minima in the list
have been visited, and (c) any other stopping criterion is
fulfilled such as CPU time, maximum number of iterations, etc.

Finally, the sorted list of minima is reported as output, the
lowest one being the best estimate of the global minimum and the
other low lying minima giving an indication of how unique the
optimal values of the parameters are. The algorithm, thereby,
generates a map of the relevant minima. One advantage of the
algorithm can be that only relatively low values of the objective
function need to be evaluated and the regions with high values,
which can be less well defined, are avoided. An example of this is
discussed below.

The GOUST algorithm can be applied in many different con-
texts. Here, we report our work on interfacing the algorithm with
iTOUGH2 for inverse modeling. The goal is to demonstrate its
applicability to parameterization of geothermal reservoir models.
The algorithm is illustrated below in the context of two application
problems.

3. Model 1: steady-state Darcy experiment

We illustrate the occurrence of multiple minima and the perfor-
mance of the optimization algorithm proposed here with a test
problem presented in the iTOUGH2 documentation (Finsterle, 2007).
Water is injected at constant pressure into a one-dimensional,
horizontal column filled with uniform, partially saturated sand. This
setup is similar to the steady-state Darcy experiment (Finsterle,
2007). However, there is a certain amount of free gas initially present
in the column. Information about the transient behavior of pressure
and flow rate is used to determine two-phase flow parameters. The
model parameters to be optimized are the permeability of the sand
and the initial gas saturation.

3.1. Objective function

The objective function (see Eq. (4)) is defined as the squared
deviation between measured and calculated pressure and flow
rate at two selected points within the column.

sðp1; p2Þ ¼ ∑
60

i ¼ 1

½Pn

i �Piðp1; p2Þ�2
s2
Pn

i

þ ∑
60

i ¼ 1

½Qn

i �Qiðp1; p2Þ�2
s2
Qn

i

ð4Þ

Here, p1 and p2 are the two variable parameters: logarithm of
permeability and initial gas saturation. P and Q stands for pressure
and flow rate respectively, the superscript ‘n’ denotes measured
data and s2 is the variance.

Fig. 2 shows the shape of the objective function as the two
parameters are varied. This was obtained by mapping out the
function on a two-dimensional regular grid using the grid search
option implemented in iTOUGH2. It is clear that the objective
function has several minima. The global minimum occurs for log
(permeability) of �11.7 and initial gas saturation of 0.30. One local
minimum occurs in the vicinity of (�13.1, 0.32), and another

Fig. 2. Objective function surface for the steady-state Darcy experiment test
problem showing the effect of varying two parameters: logarithm of permeability
and initial gas saturation. The arrows point to the position of minima (m) and
saddle points (SP). In addition to the global minimum (white arrow), one shallow
local minimum is within the allowed parameter range and one is just outside
that area.
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minimum is located beyond the boundary of the parameter space,
in the vicinity of (�11.6, 0). Even though these local minima are
shallow compared to the global minimum and one of them is
located outside the predefined parameter space, they still signify a
problem in that local minimization algorithms can converge onto
these values, as will be shown in the next section. Models
involving more parameters are likely to have more local minima,
several of which can correspond to reasonable parameter values.
We use simple two-parameter examples here to illustrate the
problem, but the goal is to be able to deal with multiple local
minima in realistic problems involving many parameters.

For each local minimum, there exists a range of parameter
values such that a steepest descent minimization converges onto
this local minimum. The parameter space can be divided up into
such basins of attraction corresponding to each of the local
minima. The boundaries of the basins of attraction correspond to
ridges on the objective function surface. Minima along these
ridges correspond to SPs on the objective function surface.

3.2. Finding the nearest local minimum

The Levenberg–Marquardt minimization algorithm is found to
perform well for most iTOUGH2 applications (Finsterle, 2007) and
can be made to converge efficiently by selecting appropriate values
for the Levenberg parameter and Marquardt parameter. However, as
for most other local minimization algorithms, it only strives to
converge to the minimum closest to the initial guess of the model
parameters. This is illustrated in Fig. 3 showing minimization paths
obtained using the iTOUGH2 software and the Levenberg–Marquardt
minimization algorithm starting from two different initial guesses for
the parameter values. Minimization paths obtained using the Gauss–
Newton minimization algorithm and the conjugate gradient method
from the same initial guesses are also shown for comparison.

The above example illustrates the need for exploring the
objective function surface beyond local minima nearest to the
initial guess. While it is easy to set up enough minimization
calculations to cover a fine grid of possible initial parameter values

when the number of parameters is small, this will quickly become
unmanageable as the number of parameters increases.

3.3. Comparison of various optimization methods

In this section, four of the global optimization algorithms
mentioned above are illustrated by application to the two-
parameter Darcy experiment test problem using the iTOUGH2
software. Since this application only involves two parameters,
making it easier to visualize the results, it does not represent a
proper benchmark problem where a performance, such as com-
putational efficiency and robustness can be tested. However, the
different approaches can be illustrated with this example. Figs. 4–7
show results of simulated annealing, differential evolution, har-
mony search and the proposed GOUST algorithms. In all cases, the
calculation is started from the same initial parameter values,
(�13.0, 0.30), from which a local minimization would lead to
convergence to one of the local minima rather than the global
minimum.

Because the position of the global minimum is known, we can
assess the accuracy of the result reported by the algorithms by
calculating how large the deviation is from the global minimum.
All the calculations successfully find the global minimum within a
certain margin. The computational effort will be reported in terms
of the number of objective function evaluations (OFE) needed,
since they are by far the dominant part of the calculations. An
evaluation of the objective function requires running the TOUGH2
software to evaluate the forward model. The number of OFE for
these global optimization methods is, of course, significantly larger
than for the local minimization calculations shown in Fig. 3.

The simulated annealing algorithm was allowed run for 200
iterations and the simulation was repeated 12 times. The global
minimum was always identified and the average number of OFE
was 3404. This turned out to be the most computationally
demanding method. The progress of one of the calculations is
shown in Fig. 4.

The differential evolution algorithm was first allowed to run 30
iterations with a predefined population size of 20 individuals. For
these conditions it converged only approximately to the global
minimum, requiring 623 OFE. In an attempt to increase the accuracy,
the number of iterations was increased to 35, 40, 45 and 50 while

log(Permeability[m2])
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Fig. 3. Minimization paths using Levenberg–Marquardt algorithm (black lines),
Gauss–Newton algorithm (red lines) and conjugate gradient algorithm (blue lines)
for the steady-state Darcy experiment test problem. Calculations are started from
different initial guesses (squares) for the two parameters: log (Permeability) and
initial gas saturation. This illustrates the possibility that a minimization using these
methods can lead to convergence to a local minimum with a substantially higher
value of the objective function than the global minimum. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. A simulated annealing minimization for the steady-state Darcy experiment
test problemwith two parameters: log (Permeability) and initial gas saturation. The
initial guess for the parameter values was (�13.0, 0.3). Each evaluation of the
objective function is shown with a ‘x’. The calculation does reveal the global
minimum but requires a large number of objective function evaluations, a total
of 3404.
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keeping the same population size of 20 individuals. The number of
OFE then increased to 723, 823, 923 and 1023, respectively. In all cases,
the end result was the same except for the run with 45 iterations
where the global minimum was identified more precisely. Overall the
results do not seem to depend strongly on the number of iterations.
The effect of increasing the size of the population was then tested by
increasing it to 25, 30, 35, 40 and 45 while number of iterations was
kept at 30. The number of OFE was then equal to 778, 933, 1088, 1243
and 1398, respectively. The size of the population had a stronger effect
on how closely the simulation got to the global minimum. Overall the
best choice in terms of accuracy turned out to be 30 iterations and a
population size of 25 individuals. Then the number of OFE was 778.
The progress of that calculation is shown in Fig. 5.

In calculations using the harmony search algorithm, the num-
ber of iterations was set to 200 but the following values of the

‘harmony memory’ were tested: 15, 20, 25, 30 and 35. The
calculations required 544, 580, 569, 459 and 481 OFE, respectively.
The global minimum was most accurately identified for harmony
memory of 25. The progress of that calculation is shown in Fig. 6.

In the case of the GOUST algorithm, an evaluation of the
objective function requires running iTOUGH2, which then runs
the TOUGH2 software to evaluate the objective function and its
gradient. The GOUST algorithm was evaluated in three cases
configured to run the same number of iterations, same stopping
and convergence criteria for saddle points and minima searches
but different number of SP searches at each minimum. The
simulation was repeated 12 times. In all cases the global minimum
was accurately identified. For one, two and three SP searches per
minimum the average number of iTOUGH2 evaluations of the
objective function and gradient was 212, 264 and 358, respec-
tively. Since the gradient is evaluated here by finite differences, the
number of OFE is three times larger. An implementation making
use of automatic differentiation to obtain the gradient without
finite differences could be more efficient. The increase in the
number of SP searches per minimum does not affect how close the
results are to the global minimum because the convergence
criterion is based on a tolerance in the gradient. The progress of
one of the calculations is shown in Fig. 7. From the initial guess of
the two parameter values, a local minimization is first conducted
using the conjugate gradient minimization method. This reveals
the local minimum at (�13.06, 0.32). From there, a small random
displacement was generated and a SP search was conducted using
the MMF method. A SP was located at (�12.8, 0.31). To continue,
a small displacement was made along the minimum mode and
a new local minimization conducted to converge onto a new
minimum located at (�11.7, 0.30). The same process was repeated
for the newly found minimum. Two searches are conducted, one of
which converges onto a SP already visited, but a new SP is
discovered at (�11.6, 0.12). At this stage, the second SP is selected
and the process is repeated until no new SPs are located below a
given threshold value of the objective function. Finally, a map of
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Fig. 5. A differential evolution minimization for the steady-state Darcy experiment
test problemwith two parameters: log (Permeability) and initial gas saturation. The
initial guess for the parameter values was (�13.0, 0.3). Each evaluation of the
objective function is shown with a red circle. The calculation reveals the global
minimum and requires 778 objective function evaluations. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. A harmony search minimization for the steady-state Darcy experiment test
problem with two parameters: log (Permeability) and initial gas saturation. The
initial guess for the parameter values was (�13.0, 0.3). Each evaluation of the
objective function is shown with a red circle. The calculation reveals the global
minimum and requires 569 objective function evaluations. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 7. A GOUST exploration of the objective function for the steady-state Darcy
experiment test problem by traversing from one local minimum to another via first
order saddle points. Given an initial guess (square), a minimization is carried out
(solid black line) converging to a local minimum (m1). Then, a random increment of
the parameter values from the minimum is made (dashed black lines) and the
minimum mode following method used to climb up (red lines) the objective
function surface to home in on first order saddle points (sp1). Then an increment of
parameter values along the mode with negative curvature is made and minimiza-
tion carried out (blue lines) leading to a new minimum (m2). The process is
repeated at m2 and as a result both the global minimum and the local minima were
found. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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the minima is generated and the global minimum is reported as
the lowest minimum found. This corresponds to the best esti-
mated parameter set, which in this case is log (Permeability) equal
to �11.7 and initial gas saturation equal of 0.3.

While the two-parameter Darcy experiment test problem is are
too small and simple to truly test the performance of the various
methods, it illustrates well how different they are. The GOUST
method is somewhat systematic in that local minima are identified
one after another. The gradient of the objective function is used to
navigate on the objective function surface. As a result, the method
can deal with a large number of adjustable parameters without a
significant increase in computational effort. The most important
aspect of the GOUST method is a rather slow increase in computa-
tional effort with the increase in the number of parameters.

4. Model 2: Laugarnes geothermal area

A second illustration of the proposed global optimizationmethod is
given by inverse modeling of a geothermal field called Laugarnes,
located in Reykjavík, Iceland. This field has been studied extensively
(Thorsteinsson and Eliasson, 1970) and only a brief description is
presented here. The Laugarnes geothermal area is fed by three
aquifers: A, B and C, with water temperature of 110–120, 135, and
146 1C, respectively. Tuffs and sediments act as aquicludes between
the aquifers. The active reservoir underlies an area of 5 km2 and has a
base temperature about 145 1C (Bodvarsson and Zais, 1978). Prior to
exploitation, the hydrostatic pressure at the surface in the geothermal
field was 6–7 bars (Gunnlaugsson et al., 2000) and about 10 l/s of
88 1C water issued in free flow from the hot spring (Thorsteinsson and
Eliasson, 1970).

A model of the area was constructed using mainly a hexagonal
Voronoi mesh with 38 volume elements, covering an area of
12 km2, see Fig. 8. The model extends to a depth of 2235 m in
8 layers. There is a single volume element in layers 1 and 8, both of
which are inactive and represent the reservoir top and bottom.
Layers 3, 5 and 7 represent aquifers A, B and C respectively. Layers
2, 4 and 6 represent aquicludes and were assigned lower perme-
ability values, see Fig. 9.

A three-dimensional representation of the model is depicted in
Fig. 10. Two types of sources have been included. First, a mass
source located at the bottom of the reservoir was positioned in the
area where the upflow is thought to be located. Second, heat
sources were placed at scattered positions on the bottom. Six
calibration points are used, as shown in Fig. 10. The red line
represents the observation well and it has 4 calibration points at
4 different depths. Starting from the top, point 1 represents the
pressure at the top of the reservoir. Points 2, 3 and 4 represent the
temperature in aquifers A, B and C, respectively. Points 5 and 6 are
in the same location and represent water flow rate from the hot
spring and enthalpy of the water, respectively.

The model has been constructed to represent a realistic system
while being simple enough to serve as a convenient test problem
for inverse modeling. The data at the calibration points was
artificially generated using iTOUGH2. Gaussian noise was then
added to represent observed field data. The inverse modeling is
applied to determine the natural state of the system. The fixed
parameters in the model, were chosen to have reasonable values
consistent with what has previously been reported for this reser-
voir. By fitting generated data instead of field data, the location of
the global minimum is known beforehand, making it easier to
analyze the accuracy of the simulated results.

4.1. Objective function

The objective function (see Eq. 5) is chosen to be the squared
deviation of the calculated pressure from the observed pressure values
at calibration point 1, temperature at calibration points 2–4 and water
flow rate and water enthalpy at calibration points 5 and 6.

sðp1; p2Þ ¼ ∑
100

i ¼ 1

½Pi
n�Piðp1; p2Þ�2

s2
Pi

n

þ ∑
300

i ¼ 1

½Ti
n�Tiðp1; p2Þ�2

s2
Ti

n

þ ∑
100

i ¼ 1

½Hi
n�Hiðp1; p2Þ�2

s2
Hi

n

þ ∑
100

i ¼ 1

½Qi
n�Qiðp1;p2Þ�2

s2
Qi

n

ð5Þ

Here, p1 and p2 are the two variable parameters: logarithm of
permeability and logarithm of flow rate in this case. P, T, H and Q

Fig. 8. An aerial view of the central region of the Laugarnes geothermal area. The
Voronoi mesh used for the TOUGH2 modeling is shown. Red and blue circles are
production and observation wells, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. View of layers the model of the Laugarnes geothermal reservoir. Colors
correspond to different values of permeability and z is depth. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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are pressure, temperature, water enthalpy and flow rate respectively.
The superscript ‘n’ denotes measured data and s2 is the variance.

Fig. 11 shows the variation of the objective function as the
logarithm of the permeability of aquiclude layers and the logarithm
of the mass flow rate are varied. The grid search method implemen-
ted in iTOUGH2 was used to obtain the data for the figure. This
provides the complete topography of the function for this two-
dimensional parameter space. However, this method is computa-
tionally too demanding for most applications (Finsterle, 2007) where
more parameters are typically being varied and is used here only for
illustrative purposes. Three minima are present on the objective
function surface. The global minimum is known to be located at log
(Permeability)¼�14.00 and log (Mass flow rate)¼1.00 and hereafter
will be referred to as m2. Two local minima are also present, one at
(�16.46, 1.10), (denoted m1) and another at (12.79, 1.76), (denoted
m3). The saddle point between minimum m1 and m2 is labeled as
sp1 and the one between minimum m2 and m3 is labeled as sp2.

Both local minima correspond to a significantly higher value of
the objective function, but as mentioned earlier they will attract
minimization paths started from nearby regions in parameter space.

Fig. 11 shows that point-like spikes are present which may be
caused by numerical instabilities in the forward model. It is not
clear at this point what causes these instabilities, but since they
occur only where the objective function is relatively large, away
from the minima and saddle points, the GOUST calculation is not
severely affected.

4.2. Searching for multiple minima

Fig. 12 illustrates how the GOUST algorithm finds the global
minimum as well as the two local minima for the Laugarnes
model. From an initial guess of the parameter values of (�16.38,
1.40), a local minimization is conducted using the conjugate
gradient minimization method, converging on a local minimum
located at (�16.38, 1.40). From there, a random displacement is
generated and a SP search conducted using the MMF method. A SP
is found at (�15.96, 0.93). To continue, a displacement along the
minimum mode is made and a new local minimization conducted
to converge onto a new minimum located at (�14.0, 1.0). The
same process is repeated at the new minimum. Two searches are
conducted, one of which converges onto the a SP already visited.
From the second search, a new SP is revealed at (�13.0, 1.42)
which leads in a subsequent minimization to a new minimum at
(�12.76, 1.77). In general, the process is repeated from each new
minimum until no more SPs are found below a given threshold
value of the objective function. The global minimum as well as the
two local minima are, thereby, identified.

The paths in Fig. 12 go through the vicinity of the SPs. The
tolerance for convergence onto the SP can be large since the precise
value of the objective function there is not important. The fact that
the paths taken from one minimum to another go through the
vicinity of SPs means that parameter regions with large values of
the objective function are avoided. This can be advantageous since
unphysical parameter values can lead to convergence problems,
ill-defined values of the objective function and large computa-
tional effort.

Fig. 10. A 3-dimensional view of the model of the Laugarnes geothermal reservoir.
Colors correspond to values of permeability. From the top, points from 1 to 4 in red
color and 5 to 6 in blue color are calibration points. The red asterisks in the bottom
layer represent the heat sources. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 11. The variation of the objective function for inverse modeling of the
Laugarnes geothermal reservoir as two parameters are varied: logarithm of
permeability and logarithm of mass flow rate. For values of log (Permeability)
smaller than �15.5 and values of log (Mas flow rate) larger than 1.2, point-like
spikes can be seen, possibly because of numerical instabilities in the forward
model. The area where these occur is near a maximum, away from the minima and
saddle points, thus not affecting the GOUST calculation significantly.

Fig. 12. A GOUST exploration of the objective function for the Laugarnes reservoir
inverse modeling. The global minimum as well as two local minima are found by
traversing from one minimum to another via first order saddle points. First, starting
from an initial guess (square), a minimization is carried out (solid black line)
converging to a local minimum (m1). Then, a random increment of parameter
values from the minimum is made (dashed black line) and the minimum mode
following method used to climb up (red line) the objective function surface to
home in on a saddle point (sp1). Then, an increment of the parameter values along
the direction of negative curvature away from saddle point is made and another
minimization carried out (blue line) converging to a new minimum (m2). The
process is repeated from m2 revealing a new saddle point (sp2) and a new
minimum (m3). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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5. Conclusion

The objective functions used in inverse modeling of multiphase
flow in porous media can have multiple minima and the task of
finding the global minimum can be a challenging one. For objective
functions that are continuous and differentiable, the gradient can be
used to navigate systematically on the objective function surface so
as to move from one local minimum to another. A method we refer
to as global optimization using saddle traversals, GOUST, is presented.
It is based on climbing up the objective function surface to home in
on first order saddle points which is used to map out the local
minima. This not only gives an estimate of the global minimum (as
the lowest minimum found) but also an estimate of the uniqueness
of the optimal values found for the parameters.

The applicability of the method to reservoir modeling has been
demonstrated by coupling it with the iTOUGH2-TOUGH2 software.
The basic features of the method were illustrated with two simple
test problems including just two parameters but the method can
easily be applied to models involving a large number of para-
meters. In simulations of atomic scale systems, such saddle point
searches are routinely carried out for systems with hundreds or
even thousands of parameters (i.e. atomic coordinates) (Pedersen
and Jónsson, 2009).
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