An iTOUGH2 equation-of-state module for modeling supercritical conditions

Lilja Magnúsdóttir Stefan Finsterle

The Deep Roots of Geothermal Systems Final Meeting

Objective

Find ways to incorporate the heat source and the entire water circulation into geothermal reservoir models

Outline

Extending iTOUGH2 to Supercritical Conditions

- Thermodynamic Formulations
- Implementation in iTOUGH2
- Validation
 - 5-Spot Geothermal Problem
 - Comparison to Hydrotherm
- Utilization
 - Hengill
 - IDDP-2 at Reykjanes

Improvements

Summary

IAPWS-IF97

Accurate for supercritical conditions

Approximation of IAPWS-95

Faster than IAPWS-95

International standard	Simulator	Temperature range [ºC]	Pressure range [MPa]
IFC-67	TOUGH2, iTOUGH2	0-800	0-100
IAPWS-95	iTOUGH2-EOS1sc	0-1,000	0-1,000
IAPWS-IF97	AUTOUGH2, iTOUGH2-EOS1sc	0-800	0-100
Revised region 5 of IAPWS-IF97	iTOUGH2-EOS1sc	800-2,000	0-50

- Single phase, two phase and supercritical: ρ , T
- → iterative function inversion required in iTOUGH2

Temperature and depth dependent rock properties

Brittle/ductile transition

- Treat permeability as a function of temperature
- Latent heat of crystallization
- Double the heat capacity of the pluton for high temperatures

- IPFT = 1 Linear permeability changes
 - 2 Log-linear permeability changes

ROCKS.5

- ICFT = 1 Linear heat capacity changes
 - 2 Log-linear heat capacity changes

Five-spot geothermal problem

Supercritical conditions with extreme temperature and pressure

- Initial conditions:1100°C, 90 MPa
- Enthalpy of injected fluid: 3000 kJ/kg
- Injection/production rate: 24 kg/s
- CPU time decreases by a factor of 10 when using IAPWS-IF97 instead of IAPWS-95

4. Two-phase

Critical point

500 m

Cooling Pluton, comparison to Hydrotherm

Temperature after 5000 years:

Absolute temperature difference:

EOS1sc used to model deep roots of Hengill

402

400

Nesiavellin

Hengill

Correlation for initial conditions: Pressure 97%, Temperature 84%

EOS1sc utilized at Reykjanes

Estimate fracture connectivity at Reykjanes with an inverse analysis using direct current electric potential measurements during water injection

If water with less electrical conductivity than brine is injected into a geothermal reservoir, electrical potential in the field will increase as the injected water fills fracture paths

Time-lapse electric potential data is related to the connectivity of the fracture network

Materials	Resistivity [ohm-m]	
Pure water	1,000,000	
Natural waters	1-1,000	
Sea water	0.2	
Saline water (20%)	0.05	
Clay	5-150	
Gravel	480-900	
Limestone	350-6,000	
Sandstone (consolidated)	1,000-4000	
Igneous rock	100-1,000,000	

EOS1sc utilized at Reykjanes

Numerical Model of Reykjanes

Include magmatic intrusions

>5 km depth

Steady-state and production simulated

Pressure and temperature before and during production used to calibrate model

Electric Field Solved Using iTOUGH2

Ohm's law: $J = -\sigma \nabla V$

Darcy's law:
$$q = -\frac{k}{\mu} \nabla p$$

Source: Hyperphysics, Georgia State University

Analogy between Darcy's law and Ohm's law

	Darcy's law:	Ohm's law:	
Flux of:	Water q	Charge J	
Potential:	Pressure <i>p</i>	Voltage V	$k = \sigma \mu$
Medium	Hydraulic	Electrical	$\dot{m} = \rho Q = \rho I$
property:	k/μ	σ	

Inverse Analysis

Improvements to EOS1sc

Bézier curve implemented to eliminate discontinuities across boundaries of the thermodynamic regions

Backward equation for specific volume as a function of pressure and temperature for Region 3 of IAPWS-IF97 implemented

0.015 Newton-Raphson iteration 0.01 eliminated ΔP [MPa] 0.005 7 times faster than before \cap 55 65 75 85 **Discrepancies in P** 35 45 -0.005 between Region 1 and Region 3 -0.01P [MPa]

Summary

EOS1sc in iTOUGH2 developed for supercritical conditions

- Temperature and depth dependent rock properties
- Validation of EOS1sc
- Examples showing the use of EOS1sc Improvements to EOS1sc

Acknowledgments

Gratitude goes to the Geothermal Research Group (GEORG) for funding this study.

The second author was supported, in part, by the U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231.

Thank you!