Effect of the heterotrophic bacterium *Pseudomonas reactans* on olivine dissolution kinetics and implications for CO₂ storage in basalts

L.S. Shirokova, P. Benézeth, O.S. Pokrovsky, E. Gerard, B. Ménez, H. Alfredsson

Geochimie et Biogéochimie Expérimentale, Géosciences Environnement Toulouse (GET), UMR 5563, CNRS, Université de Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France

Institut de Ecological Problems of the North, 23 Nab. Severnoy Dviny, Russian Academy of Science, Arkhangelsk, Russia

Institut de Physique du Globe de Paris, 1 rue Jussieu, 75238 Paris, France

University of Iceland, Sudurgata, IS 101 Reykjavík, Iceland

Received 1 February 2011; accepted in revised form 29 November 2011; available online 7 December 2011

Abstract

This work is aimed at quantification of forsteritic olivine (Fo₉₂) dissolution kinetics in batch and mixed-flow reactors in the presence of aerobic gram-negative bacteria (*Pseudomonas reactans* HK 31.3) isolated from an instrumented well located within a basaltic aquifer in Iceland. The release rate of mineral constituents was measured as a function of time in the presence of live and dead cells in constant-pH (4–9), bicarbonate-buffered (0.001–0.05 M), nutrient-rich and nutrient-free media in batch reactors at 0–30 atm of CO₂ partial pressure (pCO₂). In batch reactors at 30 atm pCO₂, 0.1 M NaCl and 0.05 M NaHCO₃ the rates were weakly affected by the presence of bacteria. In nutrient media, the SEM observation of reacted grains revealed the presence of biofilm-like surface coverage that does not modify Mg and Si release rate at the earlier stages of reaction but significantly decreased the dissolution after prolonged exposure.

Olivine dissolution rates measured in flow-through reactors are not affected by the presence of dead and live bacteria at pH 9 in 0.01 M NaHCO₃ solutions. In circumneutral, CO₂-free solutions at pH close to 6, both live and dead bacteria increase the dissolution rate, probably due to surface complexation of exudates and lysis products. In most studied conditions, the dissolution was stoichiometric with respect to Mg and Si release and no formation of secondary phases was evidenced by microscopic examination of post-reacted grains. Obtained results are consistent with known molecular mechanism of olivine dissolution and its surface chemistry. Overall, this work demonstrates negligible effect of *P. reactans* on olivine reactivity under conditions of CO₂ storage in the wide range of aqueous fluid composition.

1. INTRODUCTION

Quantification of the effect of microorganisms and associated organic ligands on mineral dissolution rate is one among the last remaining challenges in modeling water–rock interactions under the Earth surface and in subsurface environments. This is especially true for underground settings within the context of CO₂ capture, sequestration and storage. First, elevated CO₂ partial pressures (pCO₂) create numerous experimental difficulties for performing robust flow-through experiments at a given saturation state. Second, despite several recent works aimed at characterizing silicate mineral dissolution under elevated pCO₂ (e.g., Giammar et al., 2005; Bearat et al., 2006; Sorai et al., 2007; Daval et al., 2009, 2010; Hangx and Spiers, 2009;
Olivine dissolution with heterotrophic bacteria

Matter and Kelemen, 2009; Garcia et al., 2010), the reactivity of main rock-forming minerals even in abiotic systems at pCO2 >> 1 atm and circumneutral pH is still poorly constrained. And third, most of bacterial species of the subsurface biosphere habitats are difficult to culture in the laboratory, many bacteria and archaea cultures can live only as consortium of microorganisms which is very hard to maintain at a controlled and stable biomass concentration and there is still a very limited number of characterizations of the communities of microbes present in subsurface environments. In this regard, experiments with cultures separated from real natural settings and using well-defined mineral substrate, whose reaction mechanism is known, are very timing.

Forsteritic olivine (Fo92, San Carlos) was chosen as typical and representative mineral of mafic and ultramafic rocks, widely considered in carbon dioxide mineral sequestration mechanisms. Numerous studies have been devoted to the dissolution kinetics of forsterite (Luce et al., 1972; Sanemasa et al., 1972; Grandstaff, 1978, 1986; Siever and Woodford, 1979; Eriksson, 1982; Sverdrup and Bjerle, 1982; Schott and Berner, 1983; Siegel and Fannkuch, 1984, 1985; Murphy and Helgeson, 1987; Blum and Lasaga, 1988; Sverdrup, 1990; Vogelius and Walther, 1991, 1992; Westrich et al., 1993; Awd et al., 2000; Chen and Brantley, 2000; Rosso and Rimstidt, 2000; Pokrovsky and Schott, 2000b; Oelkers, 2001). In these studies, it has been recognized that at 25 °C and pH < 7, forsterite dissolves congruently and the rate is proportional to the activity of protons. In alkaline solutions at pH above 8, the rate was found to be pH-independent in CO2-free solutions and decreasing by 1–1.5 order of magnitude in NaHCO3 or Na2CO3-bearing solutions. Recently, renewed interest to olivine dissolution was stimulated due to the use of this mineral for in situ and ex-situ carbon dioxide sequestration via mineral carbonation reactions (Giammar et al., 2005; Bearat et al., 2006; Hänchen et al., 2006, 2007; Prigioebbe et al., 2009a,b). However, kinetics of olivine dissolution in CO2-bearing solutions remains poorly quantified and, to the best of our knowledge, nothing is known on the forsterite dissolution at elevated pCO2 in the presence of microorganisms.

Numerous laboratory and field studies indicate that bacteria can significantly affect aluminosilicates and Al, Fe oxides dissolution rates at the earth-surface conditions (Bennett and Casey, 1994; Vandelivive et al., 1994; Welch and Vandelivive, 1994; Grantham et al., 1997; Edwards et al., 2004). Whereas bacterial exometabolites and lysis products are capable of complexing Al^3+ at the mineral surface and in aqueous solution thus facilitating the breaking of Al-O bonds or decreasing the saturation state of the system, the exopolysaccharides (EPS) may as well inhibit dissolution rates by blocking the mineral surface cation detachment sites (Lee and Fein, 2000). Much less is known on the effect of bacteria on “basic” Ca, Mg-bearing silicate dissolution rates. Unlike aluminosilicates, olivine is not affected by the chemical affinity and metal complexation in solution, so the effect of organic matter should be weaker. In a series of laboratory experiments, we demonstrated that the effect of a wide range of organic ligands, comprising both carboxylic acids and analogs of cell exometabolites on the overall dissolution rate of brucite (Mg(OH)2), wollastonite (CaSiO3), diopside (CaMgSi2O6) and di-octahedric smectite (Al-bearing clay) at the conditions of interstitial soil solutions is negligible compared to that of solution pH (Pokrovsky et al., 2005; Golubev and Pokrovsky, 2006; Golubev et al., 2006). However, the main difficulty of quantifying the effect of bacteria on mineral dissolution in laboratory experiments is that the change of pH value during microbial growth and metabolism may have significant impact on overall mineral reactivity as was often observed in earlier (Kutuzova, 1969; Lebedeva et al., 1979; Malinovskaya et al., 1990) and later (Wu et al., 2007, 2008) studies. The use of inorganic buffer such as phosphate (e.g., Hutchens et al., 2003) does not allow straightforward mineral rate interpretation because orthophosphate at pH = 7 is known to significantly accelerate mineral dissolution (Pokrovsky et al., 2005a, 2009b); as a results, microbe (organic) ligand–phosphate competition may occur.

The motivation for this work is to quantitatively access the effect of microbial activity on olivine dissolution. There are several recent studies dealing with quantifying the effect of bacteria on basalt and granite rock dissolution (Wu et al., 2007, 2008). However, due to the complexity of the whole rock systems, assessing the elementary mechanisms that control the element release in mineral–bacteria system from available data is rather difficult. From the other hand, extensive studies on aluminosilicates (Bennett and Casey, 1994; Barker et al., 1997) and calcite (Friis et al., 2003; Lütte and Conrad, 2004; Davis et al., 2007) dissolution in the presence of bacteria cannot be directly applied to basic silicates including forsterite because of different reaction mechanisms involved in these interactions.

To provide a better understanding of bacteria–mineral interaction in the context of CO2 geological storage, we selected a common soil and underground bacterium, *Pseudomonas reactans*. Bacterial strain of genera *Pseudomonas*, thanks to their relatively easy culturing, have been frequently used as a model organism in studying mineral weathering in the past (i.e., Webley et al., 1960, 1963; Duff et al., 1962) and recently (Pokrovsky et al., 2009a,b). Although culturable bacteria may only represent a small proportion of the species present in natural settings (e.g., Pedrós-Alió, 2006), they still remain the best candidates for rigorous quantification of mineral dissolution rates both in closed and open-system reactors.

The main actions of bacteria with respect to forsterite dissolution are: (1) adsorbing to mineral surface thus polarizing the bonds; (2) producing exometabolites and lysis products, thus changing the speciation in solution and the saturation state; (3) creating a proton flux from the cell cytoplasm through the cell wall to the aqueous environment thus increasing the acidity of the system (Urrutia Mera et al., 1992); (4) assimilating released mineral components in the interior of the cells via irreversible reaction; (5) adsorbing the dissolution products on the cell surface via reversible reaction. Altogether, these parallel and consecutive processes produce four main sink of mineral constituents (e.g., Mg, Si) after their release from the mineral structure: (i) adsorbed at the cell surface; (ii) incorporated...
inside the cells; (iii) complexed with cell exometabolites and lysis products in aqueous solution and (iv) present in the form of aqueous ions, neutral molecules or simple complexes. In this work, we attempted quantifying the relative contribution of each of these processes to the overall rate of Si and Mg release from the olivine surface in order to separate the short-term effect of bacterial presence (adsorption and assimilation in the course of cell growth) from the long-term mineral dissolution and precipitation reactions, most important for elaborating robust CO₂ sequestration scenarios. Towards this goal, we conducted a series of rigorously designed experiments in batch and flow-through reactors under constant biomass concentration, in the presence of both live and dead (inactivated) bacteria in the nutrient-free and nutrient-bearing media with and without mineral.

2. MATERIALS AND METHODS

2.1. Mineral, solutions and analyses

Forsterite from San Carlos (Arizona) was used in this study. The chemical analysis of this sample is given in Pokrovsky and Schott (2000a) and corresponds to the composition Mg₁.₈₂Fe₀.₁₈SiO₄ (Fo₉₂). X-ray diffraction analysis of this material before and after experiments revealed neither contamination by clay minerals nor the formation of secondary phases. Transparent crystals ~0.5 cm in size were hand-picked, ground with an agate mortar and pestle, and sieved. Two size fractions were prepared for the various experiments described below: 100–200 µm and 200–500 µm. Prepared powder was ultrasonically cleaned using alcohol to remove fine particles and dried overnight at 60 °C. The specific surface area (SSA) of the cleaned powders was 570 ± 30 and 366 ± 20 cm²/g, respectively, as determined by Kr adsorption using the multi-point (10–15 adsorption data points) B.E.T method (SSABET). Microscopic analysis of fresh and altered forsterite surfaces was performed using a Jeol JSM840a scanning electron microscope with graphite metallization.

All input and output solutions were analyzed for magnesium ([Mg²⁺]tot), silica ([SiO₂(aq)]tot), alkalinity ([Alk]), pH and organic ligands as a function of time. Alkalinity was determined following a standard HCl titration procedure and an uncertainty of ±0.05 units using solid-contact Li, Sn glass electrode coupled with Ag/AgCl reference electrode calibrated in a series of 0.1 M NaCl solutions and operating in 0.1 M NaCl as described previously (Pokrovsky et al., 2005b, 2009a).

Homogeneous solution equilibria as well as surface speciation were calculated for each solution composition using the MINTEQA2 code and MINTEQA2 thermodynamic database (Allison et al., 1991) updated from Critical Database (Martell et al., 1997). The activity coefficients of free ions and charged complexes were calculated using the Davies equation which is standard in MINTEQA2.

2.2. Bacteria cultures

Following the sampling of natural water at the CarbFix injection site (Hellisheidi, Iceland; Gislason et al., 2010) with a sampling protocol aiming at reducing contamination risks, we separated, using cultures on nutrient agar plates, four different groups of gram-negative aerobic bacteria. The enzymatic activity of studied species has been evaluated using Biolog Ecosplates using 30 different substrates in three replicates. Their phylogenetic affiliation was performed by DNA extracting (UltraClean™ Microbial DNA Isolation Kit MO BIO) and 16S rRNA gene amplifying (bacterial-specific primers 8F (5′-AGAGTTTGATCCTGTTACGAGCAG) and prokaryote-specific reverse primers 1492R (5′-GGTTACCTTGTTACGACTT), see Gérard et al., 2009 for the condition of PCR amplification) and sequencing (Cogenics, Beckman Coulter Genomics). The sequence was then identified by BLAST against the NCBI non-redundant nucleotides database. We found that Gamma-proteobacterium HK31.3 associated with the wells HK31 (see Gislason et al., 2010 for description) and P. reactans strain SR3 (Genbank ID GQ258636), share 100% identity over 927 bases at the level of their 16S RNA genes (GenBank accession number BankIt11496454 HK31.3 JQ071900). Pseudomonas strains is a common groundwater microbe frequently observed in repository environments (e.g., Nazina et al., 2006, 2010). For most experiments, cells were first cultured to a stationary stage on a shaker at 25 °C in the darkness using final 10% NB with the following composition: 0.1 g/L glucose, 1.5 g/L peptone, 0.6 g/L NaCl and 0.3 g/L yeast extract.

Dead (heat-killed) cells were produced via autoclaving 30 min at 130 °C the freshly grown bacterial biomass followed by thorough rinsing in sterile 0.1 M NaCl. Inactivated cells were produced using 0.01 M sodium azide (NaN₃) for the full duration of experiments. The use of NaN₃ as metabolic inhibitor for heterotrophic bacteria is well established (i.e., Urrutia Mera et al., 1992; Johnson et al., 2007). Another stock of dead cells was prepared via treating suspension of live bacteria in 4% glutaraldehyde solution during 4 h.

Active bacteria number count (colony forming-units, CFU mL⁻¹) was performed using Petri dishes inoculation on nutrient agar (0.1, 0.2 and 0.5 mL of sampled solution in three replicates with an uncertainty of 10–20%) in a laminar hood box. Inoculation of blanks was routinely performed to assure the absence of contamination from external environment. The biomass of live bacteria suspension was also quantified by measuring wet (centrifuged
15 min at 10,000 rpm) and freeze-dried weight in duplicates. Before the batch experiment inoculation, cells were rinsed twice in appropriate fresh culture media or sterile 0.1 M NaCl solution using centrifugation (~500 mL of solution for 1 g of wet biomass) to remove, as possible, the adsorbed metals and cell exudates from the surface. Typical live biomass concentration during batch experiment ranged from 0.5 to 8 g wet/L. All adsorption and dissolution experiments described below (Sections 2.3–2.5) were conducted with freshly-grown bacterial cultures having the identical age, physiological and initial nutritional status. Every new experiment started with washed bacterial culture grown to the beginning of stationary stage using identical nutrient composition and biomass yield.

2.3. Live bacteria interaction with mineral-free solutions in the presence of Mg and Si

These experiments aimed to quantify the amount of Mg and Si that could be retained by bacteria via both long-term intracellular uptake process (active assimilation) and passive adsorption at the cell wall. They also allow assessing eventual bioprecipitation process (presence of bioinduced mineralizations on the cell walls or in the media due to metabolically induced changes of chemical conditions). Conversely, a release of both Mg and Si from bacterial biomass as a result of cell lyses may occur. Experiments were performed in duplicates with 1–8.5 g wet/L rinsed biomasses of *P. reactus* HK31.3 and the initial concentrations of Si and Mg ranging from 100 to 200 and from 4 to 150 μmol/L, respectively. Three types of solutions were used: (1) a 10% NB protein-rich media amended with 0.01 M NaCl and 0.01 M NaHCO₃ to account on active bacterial growth and intracellular uptake in cells; (2) the same media with 0.01 M NaN₃ to prevent bacterial metabolism and assess Mg and Si interaction with bacterial cell walls without active assimilation and (3) nutrient-free 0.01 M NaCl + 0.01 M NaHCO₃ solution with 0.01 M NaN₃ to allow cell lysis and minimum element uptake. Polypropylene vials with biomass were shaken in the dark at 25 °C and periodical sampling consisted of measuring pH, optical density, bacterial number by agar plate countings in blank (supernatant) experiments and in cell suspensions without added Mg and explicitly taken into account in the refrigerator until analysis. The adsorption of magnesium on cell surface was quantified by subtracting, at each solution pH, the concentration of magnesium remaining in the supernatant (control experiments without biomass). The adsorption of magnesium on reactor walls and cellular Mg release from the biomass in the full range of pH was negligible (<10%) compared to the amount of Mg added to the reactor. It was routinely verified by Mg analyses in blank (supernatant) experiments and in cell suspensions, with biomass, using the method developed by Fowle and Fein (2000). A homogeneous parent suspension of 20 g wet/L bacteria + 20 μM Mg + 0.1 M NaCl was adjusted to pH ~8.5–9, at which ~90% Mg was adsorbed onto microbial cells. After 20 h of adsorption contact time, aliquots of this parent suspension solution were taken and adjusted to sequentially lower pH values (~8–7). The reaction vessels equilibrated at new pH values for 20 h were sampled for Mg. The concentration of “desorbed” magnesium in the supernatant allowed calculation of the amount of irreversibly “incorporated” metal. This amount never exceeded 5–10% suggesting an equilib-rium adsorption process with negligible amount of magnesium penetrating inside the cell at the conditions of our assessment. Altogether, we conducted four series of experiments in individual batch reactors with 20–30 independent data points in each. The final adsorption parameters are based on statistical treatment of 10–15 independent measurements for the maximal adsorption site density and 20–30 independent measurements for the stoichiometry of adsorption reaction.

All solutions were undersaturated with respect to magnesium oxide, hydroxide and carbonate phase as verified by calculation using the MINTEQA2 computer code and corresponding database (Allison et al., 1991). Adsorption experiments were conducted at 25 ± 0.5 °C during 4–24 h in continuously agitated suspension of 0.1 M NaCl + 0.01 M NaN₃ solution using 8 mL sterile polypropylene vials. Manipulations were conducted in sterile laminar hood box (A100). The biomass concentration was fixed at 20 g wet/L and magnesium concentration in solution ([Mg²⁺]_{aq}) spanned from 3 to 1100 μM. The pH was adjusted by adding aliquots of NaOH (0.1 and 0.01 M) or HCl (1, 0.1 and 0.01 M). Constant pH was maintained by adding 0.005 M MES (2-morpholinoethanesulfonic acid monohydrate) buffer and 0.01 M NaHCO₃ to yield a pH of 5.7 and 7.4, respectively.

For all experiments, sterile de-ionized water (MilliQ, 18 MΩ) purged with N₂ to remove CO₂ was used. Harvested biomass was rinsed in 0.1 M NaCl solution, 0.01 M EDTA solution for 15 min and again in 0.1 M NaCl solution prior the experiments. This allowed removal of all possible surface-adsorbed Mg²⁺, Ca²⁺ ions originated from the culture media and significantly decreased the release of intracellular Mg that was incorporated during bacterial growth. At the end of the experiment, the suspension was centrifuged and the resulting supernatant filtered through a 0.45 μm acetate cellulose filter, acidified with ultrapure nitric acid and stored in the refrigerator until analysis. The adsorption of magnesium on cell surface was quantified by subtracting, at each solution pH, the concentration of magnesium remaining in bacterial suspension from concentration of added magnesium in the supernatant (control experiments without biomass). The adsorption of magnesium on reactor walls and cellular Mg release from the biomass in the full range of studied pH was negligible (<10%) compared to the amount of Mg added to the reactor. It was routinely verified by Mg analyses in blank (supernatant) experiments and in cell suspension without added Mg and explicitly taken into account to calculate the adsorption yield.

The reversibility of Mg adsorption was tested following the method developed by Fowle and Fein (2000). A homogeneous parent suspension of 20 g wet/L bacteria + 20 μM Mg + 0.1 M NaCl was adjusted to pH ~8.5–9, at which 90% Mg was adsorbed onto microbial cells. After 20 h of adsorption contact time, aliquots of this parent suspension solution were taken and adjusted to sequentially lower pH values (2–8). The reaction vessels equilibrated at new pH values for 20 h were sampled for Mg. The concentration of “desorbed” magnesium in the supernatant allowed calculation of the amount of irreversibly “incorporated” metal. This amount never exceeded 5–10% suggesting an equilib-rium adsorption process with negligible amount of magnesium penetrating inside the cell at the conditions of our
experiment. The second test for reversibility, used earlier for algae and bacteria (Slaveykova and Wilkinson, 2002; Smiejan et al., 2003) consisted of treating the cell suspension with 0.01 M EDTA solution for 10 min at neutral pH, and separating the cells and the supernatant by centrifugation and filtration. The dissolved (<0.22 μm) magnesium concentration were measured in the filtrate. In both cases, very good recovery (>95%) of adsorbed Mg was achieved suggesting a truly reversible adsorption process.

2.5. Olivine dissolution experiments

The summary of olivine dissolution experiments with P. reactans is presented in Tables 1 and 2. Altogether, 10 high pCO2 long-term multi-point batch experiments (two of them in duplicates), six ambient conditions batch experiments (all in duplicates) (Table 1) and 32 bacterial mixed-flow experiments (4–5 replicates for each steady-state rate measurements) were performed (Table 2).

Table 1
Results of batch experiments. Olivine powder of 100–200 μm, SSA BET (Initial) = 570 ± 30 cm²/g.

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Mass, g/L</th>
<th>Bacteria</th>
<th>Biomass, g wet/L</th>
<th>Final BET, cm²/g</th>
<th>Range of CFU/mL, initial–final</th>
<th>Media</th>
</tr>
</thead>
</table>

| Batch Ti high-pressure reactor with in situ pH measurements; 0.1 M NaCl, 0.05 M NaHCO₃, pCO₂ = 30 atm: |
|----------|-----------|----------|-----------------|-----------------|-------------------------------|-------|
| 1 | 0 | Live | 0.28 | N.D. | 4.8 × 10⁶–3.6 × 10³ | 10% nutrient (NB) |
| 2 | 1.5 | Live | 1.6 | 352 ± 20 | 2.8 × 10⁶–10 × 10³ | 10% nutrient (NB) |
| 4 | 1.72 | Autoclaved | 1.5 | 473 ± 30 | <1–10 | Nutrient-free |
| 5 | 1.4 | Live | 3.0 | 554 ± 33 | 3 × 10⁶–10 | Nutrient-free |
| 6 | 0.72 | Autoclaved | 3.1 | N.D. | 500–5 | Nutrient-free |
| 7 | 0.80 | Treated in glutaraldehyde | 4.4 | N.D. | 100–10 | Nutrient-free |
| 10 | 1.56 | Live | 6.6 | N.D. | 1 × 10⁶–2 × 10⁶ | 10% nutrient (NB) |
| 11 | 1.66 | Inactivated in NaN₃ | 6.6 | N.D. | 2.5 × 10⁶–10 | 10% nutrient (NB) |
| 12a | 1.37 | Absent | 0 | N.D. | <1 | Nutrient-free |
| 13a | 1.39 | Absent | 0 | N.D. | 10% nutrient (NB) | Nutrient-free |

| Batch reactors without dialysis membrane: |
|----------|-----------|----------|-----------------|-----------------|-------------------------------|-------|
| L1a | 0.906 | Live, no aeration | 1.0 | N.D. | 3 × 10⁸–4 × 10⁶ | 10% nutrient (NB) |
| L2a | 0.986 | Live, aeration | 1.0 | N.D. | 3.6 × 10⁸–1.5 × 10⁶ | 10% nutrient (NB) |
| L3a | 0.818 | Live, no aeration | 1.0 | N.D. | 1.8 × 10⁸–3.8 × 10⁶ | 10% nutrient (NB) |
| L4a | 0.954 | Live, aeration | 1.0 | N.D. | 4.0 × 10⁸–3.2 × 10⁶ | 10% nutrient (NB) |

| Batch reactors with 6–8 kDa dialysis membrane: |
|----------|-----------|----------|-----------------|-----------------|-------------------------------|-------|
| L7a | 0.834 | Live, aeration | 1.2 | N.D. | 3.2 × 10⁸–3.6 × 10⁶ | 10% nutrient (NB) |
| L9a | 0.918 | Live, aeration | 0.9 | N.D. | 2.8 × 10⁸–3.2 × 10⁷ | 10% nutrient (NB) |

<table>
<thead>
<tr>
<th>Experiment, Ng</th>
<th>Duration, h</th>
<th>pH (range)</th>
<th>Log R_Si</th>
<th>Log R_Mg</th>
<th>Log R_average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1192</td>
<td>4.65 ± 0.05</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>2</td>
<td>1182</td>
<td>4.45 ± 0.05</td>
<td>−12.42 ± 0.02</td>
<td>−12.34 ± 0.03</td>
<td>−12.38 ± 0.04</td>
</tr>
<tr>
<td>4</td>
<td>407</td>
<td>4.35 ± 0.05</td>
<td>−12.45 ± 0.02</td>
<td>−12.51 ± 0.03</td>
<td>−12.48 ± 0.03</td>
</tr>
<tr>
<td>5</td>
<td>290</td>
<td>4.60 ± 0.03</td>
<td>−12.42 ± 0.03</td>
<td>−12.63 ± 0.02</td>
<td>−12.53 ± 0.10</td>
</tr>
<tr>
<td>6</td>
<td>688</td>
<td>5.05 ± 0.05</td>
<td>−12.48 ± 0.01</td>
<td>−12.48 ± 0.01</td>
<td>−12.48 ± 0.01</td>
</tr>
<tr>
<td>7</td>
<td>688</td>
<td>4.67 ± 0.03</td>
<td>−12.39 ± 0.02</td>
<td>−12.44 ± 0.03</td>
<td>−12.41 ± 0.03</td>
</tr>
<tr>
<td>10</td>
<td>1589</td>
<td>4.35 ± 0.10</td>
<td>−12.58 ± 0.02</td>
<td>−12.67 ± 0.02</td>
<td>−12.63 ± 0.04</td>
</tr>
<tr>
<td>11</td>
<td>1589</td>
<td>4.25 ± 0.05</td>
<td>−12.56 ± 0.02</td>
<td>−12.59 ± 0.03</td>
<td>−12.58 ± 0.02</td>
</tr>
<tr>
<td>12a</td>
<td>1029</td>
<td>5.08 ± 0.05</td>
<td>−12.49 ± 0.05</td>
<td>−12.27 ± 0.06</td>
<td>−12.38 ± 0.10</td>
</tr>
<tr>
<td>13a</td>
<td>1029</td>
<td>4.57 ± 0.07</td>
<td>−12.36 ± 0.03</td>
<td>−12.33 ± 0.05</td>
<td>−12.35 ± 0.03</td>
</tr>
<tr>
<td>L1a</td>
<td>1720</td>
<td>7.8 ± 0.1</td>
<td>−13.94 ± 0.02</td>
<td>−13.88 ± 0.02</td>
<td>−13.91 ± 0.03</td>
</tr>
<tr>
<td>L2a</td>
<td>1720</td>
<td>7.5 ± 0.2</td>
<td>−13.74 ± 0.02</td>
<td>−13.70 ± 0.02</td>
<td>−13.72 ± 0.02</td>
</tr>
<tr>
<td>L3a</td>
<td>1720</td>
<td>7.4 ± 0.1</td>
<td>−13.84 ± 0.02</td>
<td>−13.80 ± 0.02</td>
<td>−13.82 ± 0.02</td>
</tr>
<tr>
<td>L4a</td>
<td>1720</td>
<td>6.7 ± 0.1</td>
<td>−13.98 ± 0.06</td>
<td>−13.69 ± 0.05</td>
<td>−13.84 ± 0.14</td>
</tr>
<tr>
<td>L7a</td>
<td>1786</td>
<td>7.4 ± 0.15</td>
<td>−13.75 ± 0.08</td>
<td>−14.01 ± 0.04</td>
<td>−13.88 ± 0.13</td>
</tr>
<tr>
<td>L9a</td>
<td>1786</td>
<td>6.7 ± 0.1</td>
<td>−13.66 ± 0.02</td>
<td>−13.61 ± 0.02</td>
<td>−13.64 ± 0.02</td>
</tr>
</tbody>
</table>

* Experiments conducted in duplicates. N.D. stands for non determined.
Table 2

Results of mixed-flow experiments. Solution composition: 0.1 M NaCl + 0.01 M NaHCO₃ at pH 9, 0.1 M NaCl + 0.01 M MES at pH 6. Olivine powder of 200 to 500 μm size fraction with SSA BET (Initial) = 366 ± 20 cm²/g was used in all experiments.

<table>
<thead>
<tr>
<th>N</th>
<th>Powder, g</th>
<th>SSA<sub>Initial</sub> cm²/g</th>
<th>Time, days</th>
<th>Debit, mL/min</th>
<th>Inlet solution</th>
<th>CFU, ml/L</th>
<th>DOC, mg/L</th>
<th>Mg, μM</th>
<th>Si, μM</th>
<th>pH</th>
<th>Rates, mol/cm²/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-1</td>
<td>1.047</td>
<td></td>
<td>7</td>
<td>0.0258</td>
<td>10⁻⁶ M gluconate</td>
<td><1</td>
<td>0.2</td>
<td>5.12</td>
<td>2.10</td>
<td>6.85</td>
<td>−14.59 −14.63 −14.56 ± 0.06</td>
</tr>
<tr>
<td>08-2</td>
<td>14</td>
<td>0.0236</td>
<td>20</td>
<td>5.39</td>
<td>2.07 6.82</td>
<td>−14.52 −14.67 −14.60 ± 0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08-3</td>
<td>21</td>
<td>0.0243</td>
<td>190</td>
<td>3.37</td>
<td>2.10 6.20</td>
<td>−14.71 −14.65 −14.68 ± 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08-4</td>
<td>372 ± 20</td>
<td>1.000 M gluconate</td>
<td>1900</td>
<td>73.3</td>
<td>35.3 6.29</td>
<td>−13.36 −13.41 −13.39 ± 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06-1</td>
<td>0.984</td>
<td></td>
<td>6</td>
<td>14.52</td>
<td>/C₀</td>
<td>14.65</td>
<td>14.69 ± 0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06-2</td>
<td>11</td>
<td>0.0423</td>
<td>20</td>
<td>1.01</td>
<td>1.31 9.03</td>
<td>−14.96 −14.59 −14.78 ± 0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06-3</td>
<td>18</td>
<td>0.0419</td>
<td>190</td>
<td>1.02</td>
<td>0.634 8.90</td>
<td>−14.97 −14.91 −14.94 ± 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06-4</td>
<td>301 ± 15</td>
<td>0.01 M gluconate</td>
<td>1900</td>
<td>1.23</td>
<td>0.677 8.92</td>
<td>−14.88 −14.89 −14.83 ± 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07-1</td>
<td>1.13</td>
<td></td>
<td>7</td>
<td>0.04</td>
<td>No bacteria</td>
<td><1</td>
<td>0.8</td>
<td>2.06</td>
<td>3.24</td>
<td>6.05</td>
<td>−14.74 −14.28 −14.51 ± 0.23</td>
</tr>
<tr>
<td>07-2</td>
<td>11</td>
<td>0.0455</td>
<td>9</td>
<td>3.99</td>
<td>3.88 6.08</td>
<td>−14.40 −14.15 −14.27 ± 0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07-3</td>
<td>18</td>
<td>0.042</td>
<td>12</td>
<td>12.9</td>
<td>4.77 6.10</td>
<td>−13.92 −14.09 −14.01 ± 0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07-4</td>
<td>32</td>
<td>0.043</td>
<td>22</td>
<td>12.5</td>
<td>7.41 6.12</td>
<td>−13.93 −13.89 −13.91 ± 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05-1</td>
<td>1.073</td>
<td></td>
<td>7</td>
<td>0.0394</td>
<td>No bacteria</td>
<td><1</td>
<td>0.6</td>
<td>2.06</td>
<td>3.56</td>
<td>9.06</td>
<td>−14.72 −14.23 −14.47 ± 0.25</td>
</tr>
<tr>
<td>05-2</td>
<td>11</td>
<td>0.0375</td>
<td>4</td>
<td>1.32</td>
<td>2.07 9.02</td>
<td>−14.94 −14.48 −14.71 ± 0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05-3</td>
<td>18</td>
<td>0.036</td>
<td>9</td>
<td>3.05</td>
<td>2.31 8.95</td>
<td>−14.59 −14.45 −14.52 ± 0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05-4</td>
<td>32</td>
<td>0.036</td>
<td>13</td>
<td>1.69</td>
<td>1.67 8.90</td>
<td>−14.85 −14.59 −14.72 ± 0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-1</td>
<td>0.000</td>
<td></td>
<td>7</td>
<td>0.049</td>
<td>No bacteria, no nutrients</td>
<td><1</td>
<td>0.5</td>
<td>2.06</td>
<td>3.08</td>
<td>6.10</td>
<td>−14.44 −14.04 −14.24 ± 0.20</td>
</tr>
<tr>
<td>01-2</td>
<td>14</td>
<td>0.047</td>
<td>9</td>
<td>3.99</td>
<td>3.88 6.08</td>
<td>−14.40 −14.15 −14.27 ± 0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-3</td>
<td>18</td>
<td>0.0459</td>
<td>13</td>
<td>1.69</td>
<td>1.67 8.90</td>
<td>−14.85 −14.59 −14.72 ± 0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-4</td>
<td>366 ± 20</td>
<td>0.0425</td>
<td>48</td>
<td>0.425</td>
<td>No bacteria, 0.01 M NaN₃</td>
<td><1</td>
<td>0.5</td>
<td>2.06</td>
<td>3.08</td>
<td>6.10</td>
<td>−14.44 −14.04 −14.24 ± 0.20</td>
</tr>
<tr>
<td>02-1</td>
<td>0.640</td>
<td></td>
<td>7</td>
<td>0.0466</td>
<td>No bacteria, no nutrients</td>
<td><1</td>
<td>3.7</td>
<td>4.12</td>
<td>3.67</td>
<td>8.90</td>
<td>−14.12 −13.91 −14.02 ± 0.11</td>
</tr>
<tr>
<td>02-2</td>
<td>14</td>
<td>0.0454</td>
<td>4</td>
<td>1.23</td>
<td>2.73 8.67</td>
<td>−14.14 −14.05 −14.09 ± 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02-3</td>
<td>18</td>
<td>0.0429</td>
<td>25</td>
<td>3.53</td>
<td>3.80 8.90</td>
<td>−14.38 −13.97 −14.17 ± 0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02-4</td>
<td>352 ± 20</td>
<td>0.042</td>
<td>48</td>
<td>1.48</td>
<td>2.78 8.90</td>
<td>−14.49 −14.17 −14.33 ± 0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-1</td>
<td>0.839</td>
<td></td>
<td>7</td>
<td>0.027</td>
<td>No bacteria, no nutrients</td>
<td>0</td>
<td>0.5</td>
<td>22.6</td>
<td>18.9</td>
<td>6.50</td>
<td>−13.74 −13.56 −13.65 ± 0.09</td>
</tr>
<tr>
<td>03-2</td>
<td>14</td>
<td>0.0252</td>
<td>18</td>
<td>18.7</td>
<td>8.37 7.40</td>
<td>−13.85 −13.94 −13.90 ± 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-3</td>
<td>18</td>
<td>0.0248</td>
<td>19.8</td>
<td>21.4</td>
<td>7.30 13.84</td>
<td>−13.54 −13.69 ± 0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-4</td>
<td>48</td>
<td>0.0372</td>
<td>2.88</td>
<td>3.92</td>
<td>8.90 −14.50</td>
<td>−14.10 −13.40 ± 0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04-1</td>
<td>0.75</td>
<td></td>
<td>7</td>
<td>0.046</td>
<td>No bacteria, no nutrients</td>
<td><1</td>
<td>0.1</td>
<td>9.55</td>
<td>5.27</td>
<td>5.58</td>
<td>−13.83 −13.83 −13.83 ± 0.02</td>
</tr>
<tr>
<td>04-2</td>
<td>14</td>
<td>0.0452</td>
<td>5.5</td>
<td>28.8</td>
<td>19.5 5.61</td>
<td>−13.36 −13.27 −13.32 ± 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04-3</td>
<td>18</td>
<td>0.0451</td>
<td>13</td>
<td>45.3</td>
<td>33.8 8.50</td>
<td>−13.17 −13.03 −13.10 ± 0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04-4</td>
<td>524 ± 30</td>
<td>0.0418</td>
<td>0.5</td>
<td>7.00</td>
<td>5.70 5.94</td>
<td>−14.01 −13.84 −13.93 ± 0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Uncertainty of rate measurement is ±0.02 log R units.
2.5.1. Batch dissolution experiments with bacteria at 30 atm pCO$_2$

The aim of these experiments was to compare, under the same solution conditions, the Mg and Si release rate from 0.5–1.0 g sterilized forsterite powder of 100–200 μm size fraction in contact with dead and live bacterial cultures both in nutrient-rich (10% NB) and nutrient-free solutions. Dissolution experiments were performed in constant-pH (4.5–5.5), bicarbonate-buffered (0.05 M NaHCO$_3$), 0.1 M NaCl solutions at 30 atm of CO$_2$ and various concentrations of freshly-grown *P. reactans*. Sterilized Ti high-pressure reactors, stirred with a magnet-driven Parr stirrer were used.

Periodic sampling of homogeneous mineral + bacteria suspension was performed using Ti valve; all sampled solutions were immediately filtered through 0.45 μm filter, acidified and stored in the refrigerator before the analysis. Live cell concentration was routinely monitored using agar plate culturing and colony counting in three replicates with the uncertainty of 10–20%; the total biomass concentration was also followed via optical density measurement at 600 nm.

2.5.2. Batch dissolution experiments with bacteria at ambient conditions

The batch reactors used to study olivine–bacteria interaction consisted of sterile 500 mL polypropylene culture flasks with vented caps (BioSilo®). Experiments were conducted in duplicates with 10–15 individual data points used to calculate the forward Mg- and Si-release rates in each independent experiment. For all experiments, 0.4–0.5 g of 100–200 μm olivine powder sterilized at 120 °C during 30 min were placed in 500 mL with 10% NB or 0.1 M NaCl solution producing a solid concentration of ~1 g/L. The reactors were inoculated with 1–2 mL of fresh *P. reactans* HK31.3 cultures or the fixed amount of dead biomass and placed on a shaker at 25 ± 1 °C. Duration of experiments ranged from 1 to 4 weeks. Sterile controls were routinely run both for nutrient media and 0.1 M NaCl + 0.05 M NaHCO$_3$ solutions and did not demonstrate any bacterial contamination. Periodically, 10 mL aliquots of homogeneous mineral suspension + bacteria were collected using sterile serological pipettes for Mg, Si, pH and cell biomass measurements. The solid/fluid ratio remained constant during experiments and the concentration of bacteria was not affected by the sampling. Mg and Si concentrations were measured in acidified 0.22 μm filtrates and pH and cell biomass were measured in unfiltered non-acidified samples. Live cell concentration was routinely monitored using agar plate culturing and colony counting; the total biomass concentration was also followed via optical density measurement at 600 nm.

2.5.3. Batch experiments with dialysis membrane

In order to distinguish the direct effect of bacterial cells and indirect effect of bacterial exudates on mineral dissolution, experiments were designed such that the mineral powder was separated from bacterial suspension using a dialysis membrane of 6–8 kDa (~2–3 nm) cutoff. These experiments were conducted in duplicates with 7–12 individual data points used to calculate the forward Mg- and Si-release rates. For this, 500-mL sterile flasks were fitted with 0.5 g of 100–200 μm sterilized olivine powder enclosed in dialysis compartment which was submerged in bacterial suspension of live or dead cells, in 0.1 M NaCl containing 0.05 M NaHCO$_3$ or 0.01 M NaMES buffer with or without nutrient (as 10% NB). Periodically, 5 mL of external solution were sampled under sterile environment and analyzed for total biomass, number of active cells, pH, Mg and Si concentrations. The dissolution rate R_{average} was calculated from the slope of [Mg], [Si] – elapsed time dependence and averaged from R_{Mg} and R_{Si} values taking into account the slight increase (ca. max. 10%) of the mineral/solution ratio during the course of experiment due to sampling of external solution.

2.5.4. Mixed-flow dissolution experiments

New design of Bacterial Mixed-Flow Reactor (BMFR) system was used in this study. These reactors allow computing steady-state dissolution rate based on several (at least five) replicates of independent measurements. Typically, two parallel reactors were employed for rate quantification at each solution composition and bacterial concentration. The experiments were aimed at assessing the dissolution rate variation as a function of concentration of live and dead bacteria at two different pHs (6 and 9).

Steady-state dissolution rates were obtained at distinct solution compositions and pH using a mixed-flow reaction vessel immersed in a water bath held at a constant temperature of 25.0 ± 0.5 °C. Prior the experiment, all reactor system including tubing was sterilized at 130 °C during 30 min and rinsed by sterile MilliQ water. The cultures for each single experiment were harvested at the end of exponential stage and prepared using exactly the same experimental protocol (see Section 2.2). The input fluid containing live or dead bacterial suspension in 0.1 M NaCl with or without...
10% NB was kept in 1-L polypropylene bottles closed with Biosilico ventilated caps under continuous stirring during the experiments and was changed typically each 7 days. This allowed maintaining the constant and stable stationary phase of bacterial culture in the inlet fluid as proven by live bacteria count, optical density measurement and monitoring the DOC concentration. Bacterial suspension was injected into the reaction vessel using pre-sterilized Gilson® peristaltic pump using 2-mm inner diameter silicon tubing and typical flow rate ranging from 0.02 to 0.05 mL/min. The reactor consisted of completely filled 50-mL Teflon® beaker which was continuously stirred with a floating Teflon supported magnetic stirrer. Stirring was controlled by a stirplate located directly beneath the bath. The reactive solution left the reactor through a 20 μm pore size nylon filter that allowed the passage of bacterial cells but retained the mineral powder (0.5–1.0 g of 200–500 μm olivine grain having SSA BET of 366 cm²/g). The outlet solutions were additionally filtered through a 0.45 μm acetate filter. No differences in analytical Mg and Si concentrations were detected compared to 20 μm nylon filtered samples suggesting that the adsorption of reaction products on bacterial cells or lysis products was negligible. The inlet and outlet fluids were periodically sampled for cell optical density (total biomass) and number of live cells (agar plate counting). This also allowed monitoring possible contamination of the system by other culturable heterotrophic bacteria based on microscopic agar plate colonies examination.

Reacting fluids were comprised of deionized degassed H₂O, Merck reagent grade 0.1 M NaCl, 0.01 M NaHCO₃, or 0.01 M NaMES buffer. Experiments with dead bacteria were always performed in the presence of 0.01 M NaN₃ to prevent external bacterial contamination. Two experiments were performed in bacteria-free system in the presence of gluconic acid, a typical exometabolite of heterotrophic bacteria (e.g., Welch and Vandevivere, 1994; Welch and Ullman, 1999). Solution compositions in this set of experiments are listed in Table 2.

Mechanical steady-state in reactor was achieved after 24 h of reaction. Each experiment involved new olivine powder which was reacted with consequently increasing bacterial or ligand concentrations. For each steady-state condition, 4–5 measurements of Mg and Si concentration, pH and flow rate was recorded (reproducibility of ±10%) and used for calculating the average dissolution rate. We used a criterion of average Mg and Si concentration at steady state as ±5% at [Mg²⁺]tot ≥ 5 μM and ±15% at [Mg²⁺]tot < 5 μM, measured after achieving three times mechanical steady state. Due to the possibility of Mg, Si release from bacterial biomass in the inlet reservoir, we periodically sampled the inlet suspension before the reactor, filtered and analyzed for Si and Mg concentrations. These values never exceeded 30% of the outlet concentrations and therefore; necessary corrections for rate calculations were made.

Steady-state dissolution rates (Rₛ, mol/cm²/s) given in Table 2 were computed from measured solution composition using

\[Rₛ = -q \cdot \Delta[\text{SiO}_2\text{(aq)}]_\text{inlet}/s \]

and

\[R_Mg = -q \cdot 0.55 \cdot \Delta[Mg^{2+}]_\text{inlet}/s \]

where \(q \) (L/s) designates the fluid flow rate, \(\Delta[\text{SiO}_2\text{(aq)}]_\text{inlet} \) and \(\Delta[Mg^{2+}]_\text{inlet} \) (mol/L) stands for the difference between the input and output silica and magnesium solution concentration, respectively, \(s \) (cm²) refers to the total mineral surface area and coefficient 0.55 corresponds to Mg:Si molar ratio in the solid phase. The surface area used to calculate the rates listed in Tables 1 and 2 were that measured on the fresh (unreacted) forsterite powder.

In order to account for possible adsorption of aqueous Mg by the biomass surface, that would lead to underestimation of the rate, outlet suspension was periodically collected and treated during 10 min with 0.01 M EDTA using centrifugation. The amount of Mg released in solution after EDTA treatment was considered as reversibly adsorbed on the surface (e.g., Knauer et al., 1997; Le Faucher et al., 2005). This amount never exceeded 10% of total dissolved (<0.45 μm) filtered concentration and therefore was not considered in the mass balance of mineral dissolution in the presence of bacteria.

2.6. Statistics

Rates and element concentration data were analyzed by linear regression, Pearson correlation and one-way ANOVA with STATISTICA software package (Release 7, Stat Soft. Inc., USA). Regressions and correlation coefficients were used to examine the relationships between element concentration and time in batch reactors. ANOVA was used to test the differences in average element concentrations and bacterial biomass among experiments with different nutrient conditions and pH. Normal probability plots of residuals from regressions were used to test the assumptions of normality.

3. RESULTS

3.1. Bacterial culture characteristics

The optimal growth conditions of the bacterium \emph{P. reaconts} on Nutrient Broth Fluka 25 g/L (NB) have been determined as 5 to 37 °C and pH of 7.5–8.2 (not shown). Growth on protein-free, glucose- and phosphate-bearing media was almost negligible, in accord with results of the Biolog Ecoplates analyses. Bacterial growth was inhibited by the presence of 0.02–0.05 M Na₂CO₃ but in general it was weakly sensitive to the presence of bicarbonate and carbonate ions in a wide range of pH, from circumneutral to alkaline. Results are illustrated in Fig 1 which presents the biomass yield as a function of time based on two replicates. In these experiments, the pH evolution was similar (within ±0.3 units) among the experiments with different concentration of NaHCO₃ (from initial 9.0 to final 7.5) and that of Na₂CO₃ (from the initial 10.5 to the final 7.5). It follows from this figure that, in the range of NaHCO₃ and Na₂CO₃ concentrations used in our study to measure olivine dissolution rates (0–0.05 M NaHCO₃; 0–0.01 M Na₂CO₃, see
Section 2.5), cell growth does not depend on [NaHCO₃] and [Na₂CO₃].

The conversion factor wet/freeze-dried weight for studied microorganisms determined in three replicates was found to be equal to 8.4 ± 0.5. The conversion factor of optical density (600 nm, 10 mm path) and wet biomass (g/L) to the cell number (CFU/mL) was equal to \((5 ± 1) \times 10^8\) and \((8.0 ± 1.5) \times 10^7\), respectively as determined by analyses of five replicates.

3.2. Mg adsorption

The pH-dependence of Mg adsorption on bacteria surfaces demonstrates the following general features as shown in Fig. 2A. After 4 h of exposure, at pH below 4, there is no or little adsorption. The adsorption edge occurs at pH from 4 to 7 and above pH 8, the maximum of adsorption is observed. With further pH increase from 10 to 12, there is a pronounced decrease in adsorption, probably linked to cell lysis and surface layer degradation. The concentration of adsorbed Mg as a function of equilibrium Mg concentration in solution ([Mg⁡²⁺]ₐq) at pH of 5.7 and 7.4 after 24 h of exposure for live inactivated \textit{P. reactans} is shown in Figs. 2B. Three features of adsorption phenomena should be noted. The slopes of dependences between adsorbed and aqueous Mg remain constant over two orders of magnitude of [Mg²⁺]ₐq, suggesting a similar surface adsorption mechanisms controlling Mg distribution in the system. At the same time, while this slope is equal to 1 at pH of 5.7, it is close to 0.5 for experiment at pH = 7.4 (Fig. 2B). This may be linked to a single surface adsorption reaction at pH 5.7 (for example, carboxylate groups) and multiple surface moieties participating in Mg adsorption at pH 7.4 (carboxylate, phosphate, hydroxylate). Finally, the maximal surface adsorption density (surface site saturation) is attained at [Mg²⁺]ₐq ≈ 800–1000 µM and equals to 7–8 µmol Mg/gₚwet at both pH (Fig. 2B). For typical concentration of bacteria in kinetic experiments of 2–4 gₚwet/L, it means that 14–32 µmol/L of Mg can be complexed with bacterial surface via reversible adsorption.

3.3. Biomass interaction with Mg- and Si-bearing, mineral-free solution: Mg and Si uptake by cells

Concentrations of aqueous Mg and Si are plotted as a function of reaction time in duplicate experiments with live and inactivated bacteria and in nutrient-free media in Fig. 3A and B. In the range of low initial Mg concentration (4–12 µM) in nutrient-rich media during cell growth up to concentration of 1.2 gₚwet/L, there is <10% decrease of [Mg], most likely linked to intracellular uptake of this element. Note however that this effect is almost within the experimental reproducibility. Extrapolating these results to typical concentration of bacteria in kinetic experiments yields that <1 µmol L⁻¹ of Mg released in solution can be consumed by bacterial cells via intracellular uptake. The Si concentration evolution during bacterial growth does not subject to any systematic variation (Fig. 3 B) thus confirming that Si uptake/adsorption and release due to cell lysis are negligible at the investigated conditions.

3.4. Olivine dissolution kinetics

3.4.1. Batch experiments at 30 atm pCO₂ and pH = 4.5–5.0

SEM examination of the grain surfaces reacted in inorganic solutions and in bacteria-free nutrient media showed that they are similar to those of the fresh powder (Fig. 4A). For nutrient-free solution at pH = 4.6 (Exp. No. 13), formation of etch pits can be clearly detected (Fig. 4B). For grains reacted in nutrient media, negligible alteration of the surface has been observed (Fig. 4C), thus confirming the absence of any secondary precipitation. This is in agreement with SEM analyses of Wogelius and Walther (1991) who did not detect the precipitation of any secondary
silicate minerals even in solutions about a hundred times supersaturated with respect to talc and/or chrysotile.

In contrast to bacteria-free experiments, SEM observation of grains reacted in the presence of live cells revealed the presence of biofilm-like surface coverage composed of both cells and cell exometabolites and exopolymeric substances (EPS) that may prevent mineral dissolution during long-term exposures (Fig. 4D and F). Note the appearance of typical etch pits in some parts of the surface (Fig. 4E), also visible in abiotic experiments (Fig. 4B and C). This biofilm coverage was noted mostly in experiments with live cultures in nutrient-rich solutions and distributed on 30–50% of examined grain surfaces. For NaN3 – inactivated cultures, the olivine surface also exhibited some biofilm coverage in the form of dead cells remnants and exometabolites (Fig. 4G) although it was present only in selected zones, not homogeneously distributed over the surface (Fig. 4I). EDS analysis of selected spots on the surface (with and without biofilm coverage) yielded identical chemical composition (Mg, O, Si, Fe) with higher amount of carbon on spots with coverage. Finally, olivine grains reacted with dead (autoclaved) cultures demonstrated the presence of well preserved cells all over the surface, without specific attachment of cells to the etch pits or edges (Fig. 4J).

The viability of cells in closed reactor at 30 atm pCO2 always remains rather high, with total amount of live cells decreasing during the first several days by a factor of 10 but afterwards staying constant or slightly decreasing during the full duration of dissolution experiments as illustrated in Fig. 5 presenting results of triplicate measurements of live cell number by agar plate culturing.

Long-term batch dissolution experiments at pH 4.5–5.0, 0.1 M NaCl + 0.05 M NaHCO3 and 30 atm pCO2 and nutrient-free solutions yielded rates that were only weakly affected by the presence of live bacteria up to 7 g wet biomass/L (Fig. 6) as it is seen from the similarity of slopes of Mg (Fig. 6A and C) and Si (Fig. 6B and D) concentration
dependence on time. For some experiments, there is a “plateau” of constant Mg and Si concentration attained after 150–200 h of reaction. This “plateau” is observed only in nutrient-bearing media (bacteria-free Exp. No. 12 and Exp. No. 2 with 1.6 g\text{wet}/L live bacteria, Fig. 6B and D). There is no such plateau in experiments performed in inert electrolyte (No. 13), with live (Exp. No. 5), heat-killed (Exp. No. 6) and glutaraldehyde-treated (Exp. No. 7) cells in nutrient-free solutions nor for Exp. No. 10 and Exp. No. 11 (with live and NaN\text{3} inactivated cells, respectively) performed with nutrients. Unfortunately, without measurements of specific organic compounds, capable of inhibiting olivine dissolution, it is difficult to constrain the processes leading to the appearance of dissolution plateau in these batch reactors. Given that Exp. No. 2 demonstrated cell lysis which was more pronounced than in Exp. No. 10 (Fig. 5), it is possible that the lysis products could start to inhibit olivine dissolution after 2 weeks of reaction. Another possible explanation could be that the nutrient components such as peptone or yeast extract are capable of retarding olivine dissolution after long (\sim 150–200 h) reaction time. At high initial biomass concentration (\geq 4 g\text{wet}/L), most rate-inhibiting nutrients are consumed by bacteria during the first days of experiments, dissolution goes forward and no inhibition at late stages occurs (Exp. No. 10). Regardless of the origin of “plateau”, the bulk dissolution rates for Exp. No. 2 and 12 were computed

Fig. 4. SEM images of olivine surfaces reacted at 25 °C, 30 atm pCO\text{2}, 0.1 M NaCl + 0.05 M NaHCO\text{3}. (A): Initial sample; (B): olivine surface after Exp No 2 (50 days in nutrient media); (C) and (D): Etch pits and biofilm coverage after reaction during 40–50 days in nutrient-rich solution; (E): Exp. No. 11, NaN\text{3}-inactivated; (F): Exp. No. 6 with dead (autoclaved) cells; (G): Exp. No. 13, Bacteria-free, 0.1 M NaCl + 0.05 NaHCO\text{3}, no nutrients; (I): Exp. No. 12, Bacteria-free, 10% NB, and (J): Autoclaved bacteria in inert electrolyte.

Fig. 5. Evolution of live *Pseudomonas reactans* cell concentration (CFU/mL) during the course of experiment in batch reactor at 30 atm pCO\text{2}. The numbers represent triplicate measurements with the error bars within the symbol size.
from the linear region of \([\text{Mg}, \text{Si}]\) vs. time dependence, at the initial stage of dissolution where the inhibition does not occur. Except for experiments No. 2 and 12, the slopes of \(\text{Mg}, \text{Si} –\) time dependences remain essentially constant over full duration of the experiments and the rates calculated from these slopes are very similar within ±0.1–0.2 log units among all types of experiments: four abiotic nutrient-free and nutrient-bearing solutions (heat-killed cells, \(\text{NaN}_3\)-inactivated cells, glutaraldehyde-treated cell), four biotic (live cultures in nutrient-free and nutrient-rich media) and two inorganic (in duplicates) as listed in Table 1. Given the intrinsic scatter in pH values at each individual experiment that ranged from 4.3 to 5.1, this similarity is remarkable. Moreover, stoichiometric rate values obtained at 30 atm \(p\text{CO}_2\) and 25 °C are in reasonable agreement (within ±0.3–0.5 log \(R\) unit) with those measured in mixed-flow reactor (Wogelius and Walther, 1992; Pokrovsky and Schott, 2000b) as illustrated in the plot of log \(R\) dependence on pH (Fig. 7).

Few studies have considered that heterotrophic bacteria maintained and grown for long periods in the laboratory in nutrient-rich media may not be suitable for dissolution experiments, affecting the element release from the mineral in a lesser degree than freshly cultivated organisms (e.g., Hutchens et al., 2003). To address this possibility, we performed the experiments with freshly extracted bacterial culture (No. 2), with bacteria which were reactivated after keeping in the refrigerator at 10% nutrient solution during 1 year (No. 5), and with bacteria sub-cultured on nutrient agar for 1 year (No. 10). The difference between the rates was within ±0.1–0.2 log \(R\) units; however, the highest rates were, indeed, detected in Exp. No. 2 with fresh bacterial culture.

3.4.2. Long-term dialysis experiments

Long-term batch dialysis experiments were designed to compare element release from olivine with and without physical contact between the mineral surface and the viable bacterial cells. In these experiments the mineral surface and the bacteria were separated by semi-permeable dialysis membrane (6–8 kDa, approx. 3 nm pore size). In the presence of 10% nutrient media, the cells remained viable over the full duration of the experiment although the number of active cell decreased more rapidly in case of physical contact between mineral and bacteria (dialysis-free set-up, Fig. 8). However, for the majority of rates calculated during

![Fig. 6. Mg (A, B) and Si (C, D) concentration in solution as a function of time in batch experiments at 30 bar \(p\text{CO}_2\) (Table 1). Long-term olivine dissolution rate at pH around 5 and 30 atm \(p\text{CO}_2\) is only weakly affected by the presence of live bacteria up to 7 g wet biomass/L both in nutrient-free (A, C) and nutrient-rich (B, D) solutions. Open system stand for live cultures; solid (gray) symbols represent dead (inactivated) cultures and blue triangles and circles represent results of abiotic cell-free experiments. Analytical uncertainties on the data are within the symbol size unless indicated and the lines connecting the data points are for the aid of the reader. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image-url)
the first 400 h, the cell number was fairly similar for all experiments: \((2.5 \times 10^8 \text{cell/mL})\).

Over the first 400–500 h of experiment, Si and Mg release was close to stoichiometric that allowed precise rate calculation from the slope of concentration dependence on time. An example of Mg release as a function of time in dissolution experiment is given in Fig. 7. Within the experimental uncertainty (±0.2 log units), we could not reveal the difference of the dissolution rate in contact and in no-contact mode as it is illustrated in Fig. 7 where the logarithm of dissolution rate is plotted as a function of pH. The average log \(R\) values (mol/cm²/s) for dialysis and no-dialysis experiments at pH = 6.7–7.8 are equal to \(-13.76 \pm 0.12\) and \(-13.79 \pm 0.05\), respectively.

3.4.3. Bacterial Mixed-Flow Reactor (BMFR) experiments

The steady state was typically reached after 20–50 h depending on the flow rate. For each experiment, at least five data points at steady-state conditions were collected. In most experiments performed at pH of 6–9, stoichiometric release of Si and Mg was observed. The times necessary to reach mechanical (≈four fluid residence times) and chemical steady-states were very close. In alkaline solutions, the time to reach the stoichiometric steady-state dissolution at the same flow rate was much longer, up to 100 h.

For all experiments listed in Table 2, the outlet solutions were strongly undersaturated with respect to forsterite, brucite, magnesite, chrysotile and talc (saturation indices are below 0.1). Specific surface change in mixed-flow experiments was typically less than 20% with the exception of one experiment (Exp. 04, reacted 48 days at pH 6) demonstrating a 40% increase in the SSA (Table 2).

Experiments with dead bacteria (Exp. 07 and 05, Table 2) performed at pH 6 and 9, respectively, demonstrated negligible effect of biomass concentration (up to \(7.7 \text{g}_\text{wet/L}\)) on Mg and Si release in alkaline solutions at pH ~ 9. In contrast, in neutral solutions at pH ~ 6, the rates increased by a factor of 2–6 with the dead biomass increase (Fig. 10). Note that the concentration of dissolved organic carbon present in the form of cell exometabolites and lysis products remained stable in a wide range of pH during the dissolution experiments at each given bacterial concentration (Table 2). The [DOC] ranged from 1 to 25 mg/L being the highest in experiments with live biomass.

Experiments with live cells yielded no systematic trend of dissolution rate with biomass at pH ~ 6–9 with and without nutrients in solutions containing 0.01 M NaHCO₃ (Fig. 11). Similar result was achieved at pH = 7.5 in carbonate-free solution, whereas at pH = 5.8 in nutrient-free system, we observed a rate increase by a factor of 5–7 with the biomass increase up to 5.7 g wL (Fig. 12).

Finally, flow-through experiments with various concentration of gluconic acid were performed in bacteria-free systems. Gluconic acid and its derivatives are believed to be the main exometabolite of heterotrophic bacteria that use glucose as substrate (e.g., Duff et al., 1962; Welch and Ullman, 1999). Olivine forward dissolution rates measured as a function of total gluconate concentration at pH 6 and 9 are plotted in Fig. 13. It can be seen that the rates slightly decrease with gluconate concentration increase at pH = 9 and 0.01 M NaHCO₃ but there is a significant rate increase at pH 6 in carbonate-free solutions in the presence of >0.001 M gluconic acid.

4. DISCUSSION

4.1. Possible sinks of Mg and Si in the system

In the presence of bacteria, there are several possible sinks for mineral constituents that are being released from the forsterite surface schematically represented in Fig. 14:
aqueous (<0.45 μm) fraction in the form of ions and molecules (Ia), simple organic complexes or organic colloids of the lysis products and cell exometabolites (Ib); (ii) fraction reversibly adsorbed at the surface of cell walls (II) and (iii) fraction irreversibly assimilated in the interior of bacteria (III). Whereas the first fraction is routinely measured after solution filtration through 0.45 μm in all dissolution experiments performed in the present study, the
second and the third fractions could be only estimated via bacterial growth experiments in mineral-free, Mg, Si-bearing solutions and Mg, Si desorption from the cell surface after EDTA treatment. We evaluate that the contribution of the last two fractions to the overall mass balance during olivine dissolution is less than 10–15% and as such can be neglected. Therefore, we observe a weak proportion of adsorbed or intercellular incorporated Mg and Si, despite their possible metabolic requirement. This is in contrast to trace metals that are known to be significantly uptaken by growing biomass in bacteria – mineral experiments (Neaman et al., 2005a,b, 2006). Besides, it was also suggested that microbially mediated dissolution of phosphates may be less effective when bacteria are in direct contact with mineral surfaces (Hutchens et al., 2006). Another example is a typical environmental bacterium, Shewanella oneidensis MR-1 which was reported to decrease calcite dissolution via inhibiting the formation of etch pits at screw or point dislocations due to biofilm formation on the surface (Lütte and Conrad, 2004).

4.2. The biofilm coverage and role of bacterial contact with mineral surface

Bacterial biofilm formation on the mineral surface is known to inhibit the dissolution (Ullman et al., 1996; Hutchens et al., 2006; Davis et al., 2007; Aouad et al., 2008; Hutchens, 2009) and the excretion of complex polysaccharides may also decrease the dissolution rate (Welch and Vandevivere, 1994; Welch et al., 1999). Additionally, it was also suggested that microbially mediated dissolution of phosphates may be less effective when bacteria are in direct contact with mineral surfaces (Hutchens et al., 2006). Another example is a typical environmental bacterium, Shewanella oneidensis MR-1 which was reported to decrease calcite dissolution via inhibiting the formation of etch pits at screw or point dislocations due to biofilm formation on the surface (Lütte and Conrad, 2004).

In acidic-CO₂-bearing solutions in nutrient-rich media, a biofilm-like surface coverage of reacted grains was observed. This biofilm is likely to be formed via concerted extraction of EPS material by many bacterial cells, attached to the mineral surface. Nevertheless, the presence of such a biofilm does not appreciably affect the rate of Mg and Si release from the olivine surface. From the microscopic SEM examination of reacted grains and qualitative chemical analysis of selected spots by the EDS, we have not evidenced any secondary mineral formation within these EPS-covered surface layers. Since formation of such a biofilm occurs only in nutrient-bearing solutions, we do not expect it to be important in natural settings whose chemical composition is close to that of inert electrolyte experiments with very low [DOC]. The weak effect of bacterial coverage on olivine reactivity in acidic solutions at high CO₂ pressure is consistent with results of batch dialysis experiments at pH = 7–8 under conditions of bacteria being in contact and non-contact with mineral grains were identical within 2σ experimental uncertainty.

4.3. Mechanisms of dissolution

The weak or slightly inhibiting effect of bacteria and their exometabolites on olivine dissolution in slightly acidic and alkaline solutions and pronounced impact of bacteria and organic compounds on olivine dissolution in neutral solutions can be understood from the knowledge of olivine surface chemistry and rate-controlling mechanisms (Pokrovsky and Schott, 2000a,b; Oelkers et al., 2009). The outermost [010] surface consists of undercoordinated Mg atoms within a loosely packed sheet of oxides, with Si and O in the next layer down (Hochella, 1990). In acidic solutions (pH < 5), due to Mg^{2+}–H^+ exchange reaction...
occurring at the few atomic layers of the forsterite surface, the most surface layer of reacted forsterite can be seen as polymerized Si dimers connected with each other by common hydrogen-bonded water molecules and linked to the Mg octahedra deeper in the structure. As a result, the rate-limiting breaking of Mg–O bonds in Mg–O–Si units is weakly influenced by polarization capacity of adsorbed organic ligands. Moreover, bacterial organic polymers attached to the surface may partially hinder Mg hydration and bond polarization by water molecules.

The Si-rich, Mg-depleted layer becomes negligibly thin or disappears in neutral solutions. Therefore, one may expect a close-to-stoichiometric chemical composition of olivine surface in these conditions, as also confirmed by the X-ray Photoelectron Spectroscopy data (Pokrovsky and Schott, 2000b). In this region, therefore, the maximal effect of live bacteria and organic ligand occurs, via mainly polarization of Mg–O bonds due to adsorption on the surface.

In alkaline solutions, preferential Si removal from forsterite surfaces leads to formation of a Mg-rich layer (Pokrovsky and Schott, 2000a). The control of forsterite dissolution by the hydrolysis of Mg surface groups at pH > 9 also accounts for its inhibition by dissolved carbonate via the formation of >MgCO3 surface species on one (Pokrovsky and Schott, 2000b) or two (Wogelius and Walther, 1991) >MgOH2+ surface centers. It follows that >MgOH2+ moieties covered by adsorbed carbonate/bicarbonate ions form low reactive >MgCO3, >MgCO3 centers whose interaction with bacterial surfaces, exometabolites and exopolysaccharides, and organic ligands such as gluconate is weaker than that of «pristine» Mg–O–Si groups of olivine in neutral solution (pH 6). Indeed, the effect of various organic ligands on magnesite (MgCO3) dissolution is rather weak (Jordan et al., 2007). This scheme also corroborates the results of other basic silicate dissolution in the presence of organic ligands such as diopside (CaMgSi2O6). This mineral is characterized by much weaker influence of carboxylate ligands on dissolution rate in alkaline solutions compared to that in neutral solutions, due mostly to negative mineral charge and electrostatic repulsion of ligands from mineral surface (Golubev and Pokrovsky, 2006). Enhanced effect of organic ligands on olivine dissolution with pH increase in acidic and circumneutral solutions has been also reported in previous studies (Hänchen et al., 2006; Olsen and Rimstidt, 2008). Note that the possibility of «passivation» of the olivine surface by Fe(OH)3 in basic solutions is very unlikely at the conditions of this study: oxidation of Fe(II) into Fe(III) and Fe oxy(hydr)oxide precipitation should be significantly retarded by high concentration of dissolved organic matter (5–25 mg DOC/L, see Gonzañez et al., 2011). Besides, organic ligand – enhanced dissolution of Fe oxy(hydr)oxides is much more efficient than that of Mg(OH)2 and basic silicates, as a results, the newly-formed iron oxy(hydr)oxides will be rapidly dissolving in the presence of organic ligands.

4.4. Comparison with literature data on the effect of bacteria on silicate minerals dissolution

Over the past decades, extensive research has been done on the effect of organic ligands on mineral dissolution rate (see Ganor et al., 2009 for review). We do not anticipate any significant olivine rate increase in the presence of natural organic matter at the CO2 sequestration site because of low concentration of total DOC (0.5–1.2 mg/L at the Hellisheiði site, Shirokova et al., 2009). Concentration of
small-size organic ligands in deep aquifers is certainly lower than that measured in soil solutions (1–50 μM, Jones, 1998; Van Hees et al., 2005). At these concentration of ligands, dissolution rates of other Mg(Ca)-bearing silicates similar to olivine such as diopside and wollastonite remain unaffected by the presence of dissolved organics (Golubev and Pokrovsky, 2006; Pokrovsky et al., 2009b).

In contrast to relatively good knowledge of organic ligands effect on basic silicate dissolution, the literature data on the effect of bacteria are rather scarce. For example, it has been shown that a soil strain of *Pseudomonas* is capable of producing 2-ketogluconic acid from glucose and thus dissolving Ca, Zn, Mg silicates, wollastonite, apophyllite and olivine via formation of Ca-2 ketogluconate (Webley et al., 1960; Duff et al., 1962, 1963); however, no quantitative parameters of the process were assessed. In contrast, a recent study of soil rhizospheric bacteria *Pseudomonas aureofaciens* does not reveal any significant effect of bacteria on wollastonite dissolution both in nutrient-free and nutrient-rich solutions (Pokrovsky et al., 2009b). Fayalite (Fe2SiO4) dissolution at pH = 2 in the presence of aci-dophilic, iron-oxidizing bacteria was significantly inhibited compared to abiotic controls (Santelli et al., 2001). This inhibition was attributed to formation of unreactive lauhunite-like (Fe2+Fe3+2(SiO4)3) surface region due to bacterial oxidation of released Fe2+ (Welch and Banfield, 2002). However, such mechanisms are unlikely to occur at the conditions of our experiments because of much higher pH values, and, as a result, significantly lower dissolved Fe concentration.

Aluminosilicates and Fe-bearing minerals are much more susceptible to microbial-driven dissolution compared to Ca, Mg-bearing orthosilicates. The main reason is the change of Al and Fe speciation in solution due to bacterial exometabolites and siderophores leading to a decrease of the activity of free Al3+ and Fe3+, avoiding formation of secondary insoluble oxides and increase of the overall dissolution rate (Welch and Ullman, 1993; Vandevivere et al., 1994; Oelkers and Schott, 1998; Liermann et al., 2000; Maurice et al., 2001) or the selective uptake of trace metals (Brantley et al., 2001). Despite a common opinion that microbes accelerate weathering (Robert and Berthelin, 1986; Thorseth et al., 1992; Uroz et al., 2009), there are also studies that demonstrate rather weak or inhibiting effect (see for review Valsami-Jones and McEl Downey, 2000; Hutchens, 2009; Sverdrup, 2009). Thus, biotite weathering in the presence of ectomycorrhizal fungus, *Suillus tomentosus*, demonstrated only weak or no effect compared to abiotic experiments (Balogh-Brunstad et al., 2008). Similar conclusion for this mineral has been reached in experiments with several typical bacterial and fungal strains (Hopf et al., 2009). Finally, dissolution of basaltic glass was negligibly affected by the presence of *P. reactans* (Stockman et al., 2010a,b).

4.5. Application to CO2 underground sequestration scenarios and soil weathering

By encompassing the largest variety of bacterial live conditions, nutrient-rich and nutrient-free media, we explored two most extreme cases of heterotrophic bacterial impact on mineral dissolution. Typical concentrations of live cells used in present experiments is (1–9) × 106 cell mL−1 in mixed-flow reactors and ~105–106 cell mL−1 in batch high-pCO2 pressure reactors. This is significantly higher than the concentration of culturable heterotrophic bacteria measured in samples of Icelandic groundwaters used to separate *P. reactans* (40–520 CFU mL−1; Shirokova et al., 2009). At the same time, our experimental concentrations are comparable with (i) average bacterial populations in soils that range between 105–107 cells cm−3 (Atlas and Bartha, 1993); (ii) bacterial concentrations in shallow aquifers (106 cells mL−1, Ehrlich, 1996) and in deep subsurface environments (Sinclair and Ghiors, 1989; Stevens and McKinley, 1995; Pedersen, 1997). For example, granite bedrock boreholes down to a maximum of 860 m contain in average 2.6 × 105 total bacteria mL−1 and 7.7 × 105 CFU (culturable bacteria) mL−1 (Pedersen and Ekedahl, 1990). It is known that culturable bacteria may only represent a small proportion of the species present (the ones that respond well to culture conditions), not necessarily the ones that had an important function in situ, with a possible bias towards rare species (e.g., Pedrós-Alió, 2006). Nevertheless, we believe that the very high concentrations of bacterial strain used in the present study should allow straightforward evaluation of the degree to which the heterotrophic bacteria are capable of influencing mineral dissolution in natural settings.

It follows from results of this study that the presence of carbonate/bicarbonate ions and alkaline solutions (pH > 9), typical for basaltic aquifers should significantly inhibit the impact of heterotrophic microbial activity and cell exometabolites on olivine dissolution rate. In acidic, CO2-saturated solutions at pH < 5 the impact of heterotrophic bacteria is also minor. Only in neutral, carbonate-free solutions do the live but starving cells and dissolved organic ligands measurably enhance olivine forward dissolution rates. This implies the existence of rather narrow window, in which the underground biota may actually affect basic silicate reactivity at the conditions of CO2 storage. At the typical scenario of CO2 sequestration in basaltic aquifers, initially acidic, CO2-saturated solutions will be progressively replaced by neutral, HCO3−-bearing solutions. Note that in situ carbonate mineralization will decrease the concentration of dissolved inorganic carbon while maintaining the pH around 7. During this stage of CO2 sequestration, one may expect a pronounced and positive effect of underground biota on mineral reactivity. Finally, in the post injection period, as the CO2-rich front moves into the aquifer, pH increases to >7 following carbonates/silicates dissolution as shown by reactive transport simulations (Brosse, 2002; Knauss et al., 2005). At these pH values, the aqueous C-speciation changes from H2CO3 to HCO3− and CO3−2 dominated which should result in an inhibition of both olivine (Pokrovsky and Schott, 2000b) and carbonate mineral dissolution (Pokrovsky et al., 2005b, 2009a). An important conclusion is that aqueous bacteria and organic ligands are in no way capable preventing this drop in olivine and calcite dissolution rate as followed from results of the present study and that of Oelkers et al. (2011), respectively.
In a more general perspective, relatively weak effect of bacteria and microbial exometabolites on olivine (this study) and other Ca–Mg-bearing silicates such as wollastonite (Pokrovsky et al., 2009b) reactivity in aqueous solutions is that the impact of plants and biota on “basic” mineral chemical weathering in soils may be weaker than generally argued for (aluminosilicates. Indeed, the main factor controlling the aluminosilicates dissolution – aqueous activity of dissolution inhibitor Al$^{3+}$(aq) – is not important for Ca, Mg-bearing silicates since the far-from-equilibrium rates of the latter’s are not controlled by the presence in solution of minor constituents (Ca, Mg, and Si, at least in the neutral pH range, Schott et al., 2009).

The complexation of organic ligands with aqueous and surface Al and complexation of Al with bacterial surface will be the main mechanisms of bacterial influence on aluminosilicates dissolution via aqueous Al$^{3+}$ removal from solution thus decreasing its inhibiting effect and the supersaturation degree with respect to secondary Al-phases. In contrast, speciation of Ca and Mg in solution is weakly affected by the presence of biological ligands and the adsorption of organic matter on the surface of basic silicates is weak. As a result, the atmospheric CO$_2$ consumption on the land and Ca, Mg-associated transport of aqueous bicarbonate ions in rivers linked to basic silicates weathering is unlikely to be directly controlled by heterotrophic microbiological activity in soils.

5. Concluding Remarks

Experimental study of olivine reactivity in the presence of the heterotrophic bacterium P. reactans extracted from the basaltic aquifer CO$_2$ storage site was performed at a large variety of experimental conditions, both with nutrient-free and nutrient-rich media. These two extreme cases of bacterial metabolism together with a wide range of cell concentration (10^3–10^6 cell mL$^{-1}$) allowed exploring both active and passive mechanism of bacteria interaction with mineral surface under experimental conditions relevant to natural settings. Stoichiometric olivine dissolution rates measured in batch reactors at pH = 4.5, 30 atm pCO$_2$ and 25°C yielded log R ranging from -12.4 to -12.8 mol/cm2/s in agreement with previous measurements in CO$_2$-free systems. Long-term olivine dissolution rate at pH around 7 and atmospheric pCO$_2$ is only weakly affected by the presence of live bacteria, in agreement with previous results on wollastonite (CaSiO$_3$) dissolution rate in the presence of another gram-negative bacteria, P. aureofaciens (Pokrovsky et al., 2009b). Effect of P. reactans and their exometabolites on olivine dissolution at 25°C, pH 6–9, 0.1 M NaCl, 0–0.01 M NaHCO$_3$ at naturally-relevant conditions is rather minor. Overall, this work demonstrates inhibiting rather than accelerating effect of heterotrophic bacterial activity on olivine reactivity under conditions of CO$_2$ storage.

Acknowledgements

We are grateful to anonymous reviewers for very constructive comments. This work was supported by the ANR program (National Agency for Research, within the framework of the CO2-FIX project under contract ANR-08-PCO2-0003). The authors are grateful to A. Castillo and M. Thibaut for careful technical assistance with the B.E.T. and XRD analyses, respectively. T. Aigouy is thanked for assistance with the SEM analyses.

References

Malinovskaya I. M., Kosenko L. V., Votselko S. K. and Podgorskii V. S. (1990) Role of Bacillus maciligenus polysac-
Olivine dissolution with heterotrophic bacteria

49

Associate editor: Roy A. Wogelius