An experimental study of crystalline basalt dissolution from $2 \leq \mathrm{pH} \leq 11$ and temperatures from 5 to 75 °C

Snorri Gudbrandsson a,b,*, Domenik Wolff-Boenisch a, Sigurdur R. Gislason a, Eric H. Oelkers b

a Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
b GET, CNRS/UMR 5563-Université Paul Sabatier, 14 rue Edouard Belin, 31400 Toulouse, France

Received 2 December 2010; accepted in revised form 22 June 2011; available online 1 July 2011

Abstract

Steady-state element release rates from crystalline basalt dissolution at far-from-equilibrium were measured at pH from 2 to 11 and temperatures from 5 to 75 °C in mixed-flow reactors. Steady-state Si and Ca release rates exhibit a U-shaped variation with pH where rates decrease with increasing pH at acid condition but increase with increasing pH at alkaline conditions. Silicon release rates from crystalline basalt are comparable to Si release rates from basaltic glass of the same chemical composition at low pH and temperatures ≤ 25 °C but slower at alkaline pH and temperatures ≥ 50 °C. In contrast, Mg and Fe release rates decrease continuously with increasing pH at all temperatures. This behaviour is interpreted to stem from the contrasting dissolution behaviours of the three major minerals comprising the basalt: plagioclase, pyroxene, and olivine. Calcium is primarily present in plagioclase, which exhibits a U-shaped dissolution rate dependence on pH. In contrast, Mg and Fe are contained in pyroxene and olivine, minerals whose dissolution rates decrease monotonically with pH. As a result, crystalline basalt preferentially releases Mg and Fe relative to Ca at acidic conditions. The injection of acidic CO2-charged fluids into crystalline basaltic terrain may, therefore, favour the formation of Mg and Fe carbonates rather than calcite. Element release rates estimated from the sum of the volume fraction normalized dissolution rates of plagioclase, pyroxene, and olivine are within one order of magnitude of those measured in this study.

© 2011 Published by Elsevier Ltd.

1. INTRODUCTION

A large number of studies have been performed to determine the dissolution rates of individual minerals in the laboratory as a function of temperature and reactive fluid composition (e.g. Lasaga et al., 1994; Brantley and Chen, 1995; Oelkers and Schott, 1995, 2001; Schott et al., 2009). Natural rocks, however, consist of a number of different minerals and glasses, each with distinct reactivities and surface areas. Geochemical modelling codes such as PHREEQC (Parkhurst and Appelo, 1999) sums together the dissolution rates of each mineral in a rock to estimate overall rock dissolution rates. This study aims to validate this geochemical modelling approach through experimental measurement of crystalline basalt dissolution. The present communication presents the results of these experiments and uses them to assess the application of individual mineral dissolution rates to describe those of a multi-phase rock.

Crystalline basalt was chosen for this study for a number of reasons. First, the selected basalt has a simple mineralogy, consisting mostly of olivine, pyroxene, and plagioclase. The dissolution rates of these minerals have been studied extensively over the past two decades (e.g. Chou and Wollast, 1985; Blum and Lasaga, 1991; Blum and Stillings, 1995; Oelkers and Schott, 1995; Stillings and Brantley, 1995; Pokrovsky and Schott, 2000b; Hänchen et al., 2006). Secondly, the composition of basalt can range from 100% glass to 100% crystalline. Experimentally measured basaltic glass
dissolution rates have been reported in the literature (e.g. Oelkers and Gislason, 2001; Gislason and Oelkers, 2003; Wolff-Boenisch et al., 2004a,b, 2006; Flaathen et al., 2010; Stockmann et al., 2011). This study which investigates the reactivity of a basalt that contains 100% crystalline minerals allows direct assessment of the role of crystallinity on rates. Thirdly, a number of studies have considered the possibility of carbon storage in basaltic rocks (Dessert et al., 2003; McGivern et al., 2006; Marini, 2007; Matter et al., 2007; Goldberg et al., 2008; Kelemen and Matter, 2008; Oelkers et al., 2008; Prigioibe et al., 2009b; Gislason et al., 2010). This process involves dissolution of basalt releasing divalent metal cations such as Ca$^{2+}$, Mg$^{2+}$, and Fe$^{2+}$ to solution. These ions can react with dissolved CO$_2$ and precipitate as carbonate minerals. The rate limiting step for this reaction is commonly assumed to be the release of divalent cations from basalts (e.g. Marini, 2007; Oelkers et al., 2008). Knowledge of basalt dissolution rates is, therefore, paramount to assessing the efficiency of potential carbon sequestration method. Fourthly, despite the large number of past studies on basalt dissolution coupled to secondary mineral precipitation (Gislason and Eugster, 1987a,b; Gislason et al., 1993; Navarre-Sitchler and Brantley, 2007; Wu et al., 2007; Gudbrandsson et al., 2008; Hausrath et al., 2009; Schaeff and McGrail, 2009) few studies have investigated basalt dissolution in the dilute aqueous solutions relevant to continental surface weathering processes. Fifthly, because of its high reactivity, chemical weathering of basalt plays a significant role in the global cycle of numerous elements (Gislason et al., 1996, 2006, 2009; Brady and Gislason, 1997; Louvat and Allegre, 1997; Moulton et al., 2000; Dessert et al., 2001; Stefansson and Gislason, 2001; Neaman et al., 2005; Eiriksdottir et al., 2008; Hartmann et al., 2009; Allegre et al., 2010) and may play a significant role in the weathering of the Martian surface (e.g. Hausrath et al., 2008, 2009).

2. THEORETICAL BACKGROUND

The standard state adopted in this study is that of unit activity of pure minerals and H$_2$O at any temperature and pressure. For aqueous species other than H$_2$O, the standard state is unit activity of species in a hypothetical 1 m solution referenced to infinite dilution at any temperature and pressure. All thermodynamic calculations reported in this study were performed using the PHREEQC computer code (Parkhurst and Appelo, 1999) together with its phreeqc.dat database to which thermodynamic data have been added for magnesite, siderite, thomsonite, scolecite, mesolite, laumontite, heulandite, analcime, Ca-stilbite, Ca-mordenite, Ca-clinoptyllolite, Fe-celadonite, antigorite, amorphous SiO$_2$, amorphous FeOOH, amorphous Al(OH)$_3$, gibbsite, allophane, and imogolite taken from Gysi and Stefansson (2011).

The crystalline basalt dissolved in this study is comprised of three major mineral phases, the pyroxene augite, the plagioclase labradorite, and a forsteritic olivine in addition to minor amounts of iron oxides. Pyroxene dissolution rates and mechanisms have been reported by Knauss et al. (1993), Brantley and Chen (1995), Oelkers and Schott (2001), Golubev et al. (2005), Dixit and Carroll (2007), and Daival et al. (2010). Pyroxene dissolution rates decrease continuously with increasing pH and are mildly inhibited by increasing divalent metal cation concentration. Oelkers (2001b) suggested that far-from-equilibrium pyroxene dissolution rates (r_{py}) can be described using

$$r_{\text{py}} = k_{\text{py}} \left(\frac{a_{\text{H}^+}^{\text{H}^+}}{a_{\text{Mg}^{2+}}^{\text{Mg}^{2+}}}\right)^n$$

where k_{py} designates a rate constant, a_i corresponds to the activity of the subscripted aqueous species, M$^{2+}$ refers to the divalent metal present in the pyroxene and n_{py} stands for a stoichiometric coefficient equal to 1/8. A large number of studies have provided forsterite dissolution rates (e.g. Grandstaff, 1977; Kuo and Kirkpatrick, 1985; de Leeuw et al., 2000; Pokrovsky and Schott, 2000a,b; Rosso and Rimstidt, 2000; Oelkers, 2001a; Morales and Herbert, 2002; Olsen and Rimstidt, 2008; Prigioibe et al., 2009a; Wimpenny et al., 2010). An equation describing far-from-equilibrium forsterite dissolution rates (r_{fo}) as a function of pH and solution composition is given by Pokrovsky and Schott (2000b)

$$r_{\text{fo}} = k_{\text{fo}} \left(\frac{K_{\text{ads}} a_{\text{H}^+}^{\text{H}^+} a_{\text{Mg}^{2+}}^{\text{Mg}^{2+}}}{1 + K_{\text{ads}} a_{\text{H}^+}^{\text{H}^+} + \frac{a_{\text{Mg}^{2+}}^{\text{Mg}^{2+}}}{K_{\text{ex}}}}\right) + k_{\text{Mg},\text{fo}} \left(>\text{MgOH}_2^+\right)$$

where k_{fo} and $k_{\text{Mg},\text{fo}}$ correspond to rate constants, K_{ads} and K_{ex} refer to equilibrium constants, and $>\text{MgOH}_2^+$ stands for the concentration of the MgOH$_2^+$ surface species. Most studies of plagioclase dissolution rates have focused on the dissolution rates of the albite end member (e.g. Chou and Wollast, 1984, 1985; Blum and Lasaga, 1991; Stillings and Brantley, 1995). Fewer studies have measured the dissolution rates of more Ca/Al-rich plagioclases (Oxburgh et al., 1994) and anorthite (Oelkers and Schott, 1995). Albite dissolution rates exhibit a synchilal form, where rates decrease with increasing pH at acidic conditions but increase with increasing pH at alkaline conditions. The far-from-equilibrium dissolution rates of An$_{\leq80}$ plagioclases (r_{plag}) can be described using (Oelkers and Schott, 1995; Oelkers, 2001b)

$$r_{\text{plag}} = k_{\text{plag}} \left(\frac{a_{\text{H}^+}^{\text{H}^+}}{a_{\text{Mg}^{2+}}^{\text{Mg}^{2+}}}\right)^n K_i \left(1 + K_T \left(\frac{a_{\text{H}^+}^{\text{H}^+}}{a_{\text{Mg}^{2+}}^{\text{Mg}^{2+}}}\right)\right)$$

where k_{plag} refers to a rate constant, n_{plag} is the stoichiometry coefficient equal to 1/3, and K_T stands for an equilibrium constant. This rate behaviour is similar to that of basaltic glass (Oelkers and Gislason, 2001) and other more acidic volcanic glasses (Wolff-Boenisch et al., 2004b). Note that a large body of experimental evidence indicates that n_{py} and n_{plag} in Eqs. (1) and (3) are temperature independent from at least 25 $< T < 200 \, ^\circ\text{C}$ (Oelkers and Schott, 2001; Oelkers, 2001b; Schott et al., 2009). The variation of the rate constants in Eqs. (1)–(3) with temperature can be estimated using the Arrhenius equation given by

$$K_i = A_i \exp(-E_i/RT)$$

where E_i designates an activation energy, A_i denotes a pre-exponential factor, R stands for the gas constant, and T represents absolute temperature in K. Similarly, in the
absence of a mechanistic interpretation, apparent activation energies can be generated from measured dissolution rates using

\[r_i = A_i \exp\left(-\frac{E_0}{RT}\right) \]

where \(E_0 \) designates an apparent activation energy, \(A_i \) denotes a pre-exponential factor.

A comparison of the specific, far-from-equilibrium dissolution rates of diopside, forsterite, and plagioclase normalized to Si is shown as a function of pH at 25°C in Fig. 1. The data sets chosen for this figure were those that covered the complete range of pH considered in this study. For example, diopside dissolution rates were chosen rather than those of augite to represent the rates of pyroxene dissolution as they are available for the full range of pH considered in this study. The plagioclase rate curve in this figure was obtained by multiplying the albite dissolution curve from Chou and Wollast (1985) by 4 to fit the bytownite and andesine rate data. This plagioclase curve was used to represent labradorite dissolution behaviour in this study.

![Graph showing Si release rates of selected minerals at 25 °C as a function of pH.](image)

Fig. 1. Si release rates of selected minerals at 25 °C as a function of pH. The bytownite, andesine, forsterite, and diopside elemental rates illustrated in this figure were taken from Oxburgh et al. (1994), Pokrovsky and Schott (2000b), and Knauß et al. (1993), respectively. The plagioclase curve was obtained by multiplying the albite dissolution curve from Chou and Wollast (1985) by 4 to fit the bytownite and andesine rate data. This plagioclase curve was used to represent labradorite dissolution behaviour in this study.

3. MATERIALS AND METHODS

Crystalline basalt was collected from a basaltic dyke on Stapafell Mountain, SW-Iceland. The sampled dyke had no...
visible alteration features. The composition of the sampled crystalline basaltic rock is similar to that of mid-ocean ridge basalts (MORB). This basalt was also chosen because dissolution rates for basaltic glass obtained from this site have been previously reported (Oelkers and Gislason, 2001; Gislason and Oelkers, 2003).

The bulk chemical composition of the sampled crystalline basalt was analyzed using a Panalytical PW2404 wavelength-dispersive sequential X-ray fluorescence spectrometer located at the University of Edinburgh. The measured composition is reported in Table 1 and is consistent with Si$_1$Ti$_{0.025}$Al$_{0.329}$Mg$_{0.310}$Fe(III)$_{0.02}$Fe(II)$_{0.193}$Ca$_{0.273}$Na$_{0.061}$K$_{0.007}$O$_{3.394}$. This composition is nearly identical to that of Stapafell basaltic glass (Oelkers and Gislason, 2001; Gislason and Oelkers, 2003). The mineralogical composition of the basalt was determined by point counting. Four hundred points were counted from thin sections of the basalt; this analysis shows the basalt to contain 41.3 vol.% plagioclase (plag), 34.0 vol.% pyroxene (py), 15.8 vol.% olivine (ol), 4.7 vol.% iron oxides, and 4.2 vol.% glass. Such glass is likely Na and Si-rich compared to the bulk rock (Meyer and Sigurdsson, 1978). The volcanic glass was found in the samples collected close to the edge of the dyke, so experiments were performed on samples collected from the dyke centres. No volcanic glass was observed in the samples dissolved in this study by scanning electron microscope (SEM) imaging.

The mineral composition of the basalt was also determined using a Stoe Stadi P Transmission XRD. Scans were run from 5° to 109.99° with a 0.05° step. Mineral abundance was determined by XRD peak intensity. This analysis suggests that the relative volume proportion of plag:py:ol is 44:39:17.

The chemical composition of the minerals in the crystalline basalt was determined from standard wavelength dispersive techniques using a JEOL Superprobe JSL 8200 located at the University of Copenhagen. These analyses were performed using an acceleration voltage of 15 kV, a

Fig. 2. Mineralogical compositions of the minerals in the basalt used in presented study plotted in ternary diagram. (a) The compositions of 46 analyzed plagioclase grains, (b) the compositions of 44 analyzed pyroxene and 8 analyzed olivine grains. Chemical analyses were performed by microprobe.

Fig. 3. SEM photomicrographs of the crystalline basalt. (a) The crystalline basalt before dissolution experiments, (b) the basalt after it was dissolved in dissolution experiments at pH 10 at 25, 50, and 75 °C for total of 623 h. No secondary phases are observed and the edges seem to be somewhat rounded by the dissolution.
beam current of 15 nA and a beam diameter of 2 μm. Natural and synthetic minerals and glasses were used as standards to check for potential drift. The resulting mineralogical composition of the basalt is given in Table 2 and is displayed graphically in Fig. 2. In total, 98 grains were analyzed, 46 plagioclase, 8 olivine, and 44 pyroxene. The microprobe data show that the plagioclase is of labradoritic composition (An_{65}), the olivine has a forsterite component of Fo_{85} and the pyroxene is of augite composition. The measured density of the crystalline basalt is 3.03 g/cm³, in agreement with a calculated density of 3.11 g/cm³ using the density of each mineral and its volume in the crystalline basalt.

The crystalline basalt was dried at room temperature for several days before it was ground using a jaw crusher. The finely grained material was dry sieved to obtain the 45–125 μm size fraction. This size fraction was subjected to gravitational settling to remove ultra-fine particles and subsequently cleaned ultrasonically five times in deionized water and then in acetone. The resulting powder was oven-dried at 50 °C for several days. An SEM image of the resulting crystalline basalt powder is shown in Fig. 3. The surfaces are free of fine particles. Most individual grains consist of single minerals, although some multi-mineral grains are evident. The specific surface area of the cleaned and dried 45–125 μm size fraction was determined to be 7030 cm²/g via 11 point krypton adsorption using a Quantachrome Gas Sorption system. The geometric surface area of the powder was calculated using

\[A_{geo} = \frac{6}{\pi d_{eff}^3} \]

(Tester et al., 1994) where \(\rho \) designates the particle density (3.03 g/cm³) and \(d_{eff} \) represents the effective particle diameter. The number 6 is based on the assumption that grains have a smooth spherical shape. This calculation yields a geometric surface area of 246 cm²/g. The ratio between BET and geometric surface area (\(A_{BET}/A_{geo} \)) is the roughness factor, which equals 28.6.

Table 3

<table>
<thead>
<tr>
<th>Experiment No.</th>
<th>Experiments series</th>
<th>pH</th>
<th>HCl (mmol/kg)</th>
<th>NH₄OH (mmol/kg)</th>
<th>NH₄Cl (mmol/kg)</th>
<th>Mass of basalt (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02-05</td>
<td>A</td>
<td>2</td>
<td>33.46</td>
<td>0</td>
<td>0</td>
<td>4.02</td>
</tr>
<tr>
<td>03-05</td>
<td>A</td>
<td>3</td>
<td>3.35</td>
<td>0</td>
<td>8.97</td>
<td>4.02</td>
</tr>
<tr>
<td>03-25</td>
<td>B</td>
<td>3</td>
<td>3.35</td>
<td>0</td>
<td>8.97</td>
<td>2.07</td>
</tr>
<tr>
<td>03-50</td>
<td>C</td>
<td>3</td>
<td>3.35</td>
<td>0</td>
<td>8.97</td>
<td>3.30</td>
</tr>
<tr>
<td>04-05</td>
<td>A</td>
<td>4</td>
<td>0.33</td>
<td>0</td>
<td>9.91</td>
<td>4.02</td>
</tr>
<tr>
<td>04-25</td>
<td>D</td>
<td>4</td>
<td>0.33</td>
<td>0</td>
<td>9.91</td>
<td>3.99</td>
</tr>
<tr>
<td>04-50</td>
<td>D</td>
<td>4</td>
<td>0.33</td>
<td>0</td>
<td>9.91</td>
<td>3.99</td>
</tr>
<tr>
<td>04-75</td>
<td>D</td>
<td>4</td>
<td>0.33</td>
<td>0</td>
<td>9.91</td>
<td>3.99</td>
</tr>
<tr>
<td>05-05</td>
<td>E</td>
<td>5</td>
<td>0.03</td>
<td>0</td>
<td>9.91</td>
<td>5.19</td>
</tr>
<tr>
<td>05-25</td>
<td>E</td>
<td>5</td>
<td>0.03</td>
<td>0</td>
<td>9.91</td>
<td>5.19</td>
</tr>
<tr>
<td>05-50</td>
<td>E</td>
<td>5</td>
<td>0.03</td>
<td>0</td>
<td>9.91</td>
<td>5.19</td>
</tr>
<tr>
<td>05-75</td>
<td>E</td>
<td>5</td>
<td>0.03</td>
<td>0</td>
<td>9.91</td>
<td>5.19</td>
</tr>
<tr>
<td>06-25</td>
<td>F</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>9.91</td>
<td>6.00</td>
</tr>
<tr>
<td>07-50</td>
<td>F</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>9.91</td>
<td>6.00</td>
</tr>
<tr>
<td>07-75</td>
<td>F</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>9.91</td>
<td>6.00</td>
</tr>
<tr>
<td>09-05</td>
<td>G</td>
<td>9</td>
<td>0</td>
<td>5.04</td>
<td>9.98</td>
<td>4.51</td>
</tr>
<tr>
<td>09-25</td>
<td>G</td>
<td>9</td>
<td>0</td>
<td>5.04</td>
<td>9.98</td>
<td>4.51</td>
</tr>
<tr>
<td>09-50</td>
<td>H</td>
<td>9</td>
<td>0</td>
<td>5.04</td>
<td>9.98</td>
<td>5.05</td>
</tr>
<tr>
<td>09-75</td>
<td>H</td>
<td>9</td>
<td>0</td>
<td>5.04</td>
<td>9.98</td>
<td>5.05</td>
</tr>
<tr>
<td>10-25</td>
<td>I</td>
<td>10</td>
<td>0</td>
<td>50.04</td>
<td>9.85</td>
<td>4.38</td>
</tr>
<tr>
<td>10-50</td>
<td>I</td>
<td>10</td>
<td>0</td>
<td>50.04</td>
<td>9.85</td>
<td>4.38</td>
</tr>
<tr>
<td>10-75</td>
<td>I</td>
<td>10</td>
<td>0</td>
<td>50.04</td>
<td>9.85</td>
<td>4.38</td>
</tr>
<tr>
<td>11-05</td>
<td>J</td>
<td>11</td>
<td>0</td>
<td>502.04</td>
<td>8.96</td>
<td>4.20</td>
</tr>
<tr>
<td>11-25</td>
<td>J</td>
<td>11</td>
<td>0</td>
<td>502.04</td>
<td>8.96</td>
<td>4.20</td>
</tr>
<tr>
<td>11-50</td>
<td>K</td>
<td>11</td>
<td>0</td>
<td>502.04</td>
<td>8.96</td>
<td>4.20</td>
</tr>
<tr>
<td>11-75</td>
<td>K</td>
<td>11</td>
<td>0</td>
<td>502.04</td>
<td>8.96</td>
<td>4.20</td>
</tr>
</tbody>
</table>
Crystalline basalt dissolution experiments were performed at pH from 2 to 11 in a Parr™ mixed flow reactor system, as illustrated in Fig. 4. This system consists of a 300 mL titanium reactor with external temperature and stirring controls. Reactive fluids were injected into this reactor via a high pressure liquid chromatography (HPLC) pump allowing a constant flow rate from 0.5 to 4.5 mL/min. The inlet fluids were made of deionized water and Merck analytical grade NH₄Cl, HCl, and NH₄OH and had an ionic strength of 0.01 mol/kg. The compositions of all inlet solutions used in this study are reported in Table 3. The inlet solutions with neutral and alkaline pH were initially bubbled with N₂ and then continuously kept under a N₂ atmosphere to prevent CO₂ dissolution into this fluid. The reactor was cleaned thoroughly, assembled, and run for at least 24 h with deionized water and then for another 24 h with the inlet solution to rinse the tubing and clean the reactor prior to each experiment. At the end of this cleaning cycle an outlet fluid sample was taken for chemical analysis.

Experiments were initiated by placing between 1 and 5 g of dry basalt powder into the reactor. The reactor was then filled with the inlet solution, sealed, and placed in a furnace jacket. Reactive fluid flow, temperature, and stirring rates were adjusted to desired settings. The fluid/basalt powder mixture was continuously stirred at approximately 400 rpm. Gislason and Oelkers (2003) observed that rotation speeds in excess of 325 rpm was sufficient to maintain surface reaction control of basaltic glass dissolution at pH 3.3. Outlet solutions were regularly sampled, filtered using 0.2 μm cellulose acetate filters, and then acidified with

![Fig. 5. Elemental release rates, $r_{i,BET}$, during experiments performed at pH 4 and 25, 50, and 75 °C as part of a single experimental series. The symbols correspond to measured $r_{i,BET}$ whereas the dashed lines correspond to their steady state values.](image-url)
concentrated supra-pure HNO₃ prior to their analysis for Si, Mg, Na, Al, Fe, and Ca by ICP-OES. As was the case for a number of recent mineral dissolution rate studies (e.g. Flaathen et al., 2010; Saldi et al., 2010; Oelkers et al., 2011) experiments in this study were run in series. Each series consisted of a set of dissolution experiments performed on the same basalt powder. The experiments performed in each experimental series are listed in Table 3. Each experiment was run until a constant Si release rate was observed. Steady-state was confirmed by at least three consecutive outlet solution Si measurements performed on samples taken over a period of at least 10 residence times (the residence time is the ratio of the reactor volume to the fluid flow rate). This steady-state criterion was met for all experiments. After reaching constant Si release rates, temperature, flow rate or inlet fluid compositions were adjusted to new values and a new experiment began. Each experimental series was stopped before 5% of the initial basalt was dissolved.

4. RESULTS

Twenty six crystalline basalt dissolution experiments were performed in this study. The reactive fluid concentrations of Si, Al, Mg, Fe, Ca, and Na were regularly measured. These concentrations were used to calculate element release rates \(r_{ij} \) using

\[
r_{ij} = \frac{c_i FR}{A_{ij} m}
\]

where \(c_r \) represents the concentration of the \(r \)th element in the outlet fluid, \(FR \) designates the fluid flow rate, \(A_j \) and \(m \) refer to the specific surface area and mass of the solid in the reactor, respectively. The surface area used throughout this study was obtained from BET analysis \((A_{BET}) \). Each dissolution experiment was run until steady-state rates were attained. Steady-state Si and Al release rates were rapidly attained in all experiments as illustrated by the temporal evolution of \(r_{i,BET} \) values of experimental series 04-25 to 04-75 shown in Fig. 5. This series included experiments at three distinct steady-state conditions at pH 4 and 25, 50, and 75°C. Mg and Fe release rates appear to take longer to attain steady-state; this may be a consequence of divalent metal–proton exchange reactions occurring on the mineral surfaces (cf. Oelkers et al., 2009).

A summary of all measured steady-state \(r_{Si,BET} \) is given in Table 4 and are shown as a function of pH in Fig. 6. These rates exhibit the characteristic dissolution behaviour exhibited by aluminosilicate minerals; rates decrease with increasing pH at acidic conditions and increase with increasing pH at basic conditions. The dashed curves in Fig. 6 correspond to \(r_{Si,BET} \) from basaltic glass for a constant total dissolved Al concentration of 10⁻⁴ mol/kg as reported by Gislason and Oelkers (2003). The aqueous Al⁺⁺ activity is close to that of the experiments performed in this study. Rates measured in this study are compared to those for glass dissolution reported by Gislason and Oelkers (2003) because they were performed on glass samples collected from the same site, having the same chemical composition, age, and weathering history as the crystalline basalts.
dissolved in this study. Measured $\dot{r}_{\text{Si,BET}}$ for the crystalline basalts are in general equal to or lower than those of the corresponding glass. The only exception is the 5 °C experiments at high pH where crystalline basalt dissolution appears to be slightly faster than that of basaltic glass. The observation that crystalline basalt dissolution rates are in general slower than those of basaltic glass is consistent with the conclusions of Wolff-Boenisch et al. (2006).

The ratio of the release rate of each element relative to Si normalized to the corresponding ratio in the dissolving solid is displayed as a function of pH in Fig. 7. If this ratio is equal to one, the release rate of the element is stoichiometric relative to Si, if it is greater than one the element is preferentially released relative to Si, while if it is less than one the element is preferentially retained in the solid phase relative to Si. Mg and Fe tend to be preferentially released from the basalt at acid conditions and preferentially retained at higher pH. Ca is somewhat retained by the solid phase at low pH, but exhibits close to stoichiometric release relative to Si at circum neutral pH. With few exceptions, Al is retained by the solid phase at all temperatures and pH conditions considered in this study.

Steady-state outlet fluid compositions were used to calculate the saturation state of primary and potential secondary mineral phases in all experiments. The results of these calculations are shown in Annex A. The pH 3 outlet fluids were calculated to be undersaturated with respect to all primary and potential secondary minerals while the neutral to high pH outlet fluids were calculated to be supersaturated with respect to clinopyroxene, goethite, hematite, and gibbsite. Note however that the results shown in Annex A were calculated assuming the fluids were in equilibrium with atmospheric O2, which is likely an overestimate of the oxygen content of these fluids which were purged with N2 prior to their injection into the reactors. As such the saturation state of oxidized iron bearing minerals (e.g., hematite and goethite) is likely underestimated in these calculations. No secondary minerals were observed in the outlet filter or on the solids recovered following the experiments by SEM analysis suggesting that these oxidized iron minerals were in fact undersaturated in the reactive fluids.

5. DISCUSSION

5.1. Elemental release rates and CO2 storage

The results in this study illustrate the contrasting dissolution behaviour of a multi-mineral silicate rock versus its corresponding glass. Si release from both crystalline and glassy basalt exhibits a similar pH dependency, though at basic pH Si appears to be released somewhat faster from glass at 5 °C but slower at 75 °C (Fig. 6). Furthermore, the Mg and Fe release rates decrease continuously with increasing pH (see Fig. 8) while those of Si and Ca display
a synclinal shaped pH dependence. It seems likely that the distinct behaviour of crystalline basalt stems from the contrasting dissolution behaviours of its constituent minerals. The bulk of the Mg and Fe in the crystalline basalt are contained in olivine and pyroxene (see Table 2). In contrast to the dissolution behaviour of basaltic glass, the dissolution rates of olivine and pyroxene decrease monotonically with increasing pH (see Fig. 1). The effect of the distinct mineral dissolution behaviour also affects strongly the release rates of calcium. As can be deduced from Fig. 1, crystalline basalt dissolution at acid pH is dominated by the dissolution of olivine, which has a specific dissolution rate at least one order of magnitude higher than that of diopside and Ca-rich plagioclase. Olivine is Mg and Fe rich but Ca poor. As a result Ca tends to be retained by the solid at acid conditions.

The release of divalent metals to solution from silicates is an essential and perhaps rate-limiting step for the successful carbonatization of CO₂ during carbon storage efforts (cf. Oelkers et al., 2008; Schaefer and MacGillivray, 2009; Gislason et al., 2010; Schaefer et al., 2010). A significant observation presented above is that the relative...
Divalent metal release rates from crystalline basalts vary significantly with pH. The rate of Ca release from dissolving crystalline basalt as a fraction of the corresponding total divalent metal release rate at 25 °C is shown in Fig. 9. At pH 2–3 only 6–20% of the divalent metals released from basalt are calcium. At these conditions the divalent metal flux from crystalline basalt dissolution is dominated by Mg and Fe release. The fraction of Ca released increases continuously with rising pH. At pH 11, more than 80% of the divalent metal flux is Ca. Since CO₂ charged waters are acidic, crystalline basalt dissolution will release far more Mg and Fe than Ca to solution, favouring the formation of magnesite, siderite, and mixed Fe–Mg carbonates rather than calcite. This assumption is corroborated by observations of secondary carbonate formation during the alteration of basaltic lavas by CO₂-rich fluids in West Greenland (Rogers et al., 2006). Carbonates formed in this system in the initially CO₂-rich, low pH fluids are Fe and Mg-rich. Only late stage carbonates are Ca-rich. The degree to which such Mg-rich carbonates form in other systems, however, depends on their nucleation and growth rates, which may be sluggish, compared to that of calcite (Saldi et al., 2009).

Fig. 8. Element release rates from dissolving crystalline basalts at 25 °C as a function of pH. The symbols correspond to measured release rates. The curves in plots a, c, and e represent \(r_{\text{BET}} \) calculated assuming the reactive surface area of each mineral is proportional to its volume fraction, whereas the curves in plots (b, d, and f) stand for \(r_{\text{BET}} \) calculated by fitting the reactive surface area of each mineral to the measured element release rates – see text for further clarification.
5.2. Modelling element release rates from mineral dissolution rates

One of the great challenges in geochemistry is the successful prediction of chemical mass transfer rates during water–mineral interaction. Element release rates from the crystalline basalt dissolution experiments performed in this study are dominated by the dissolution of its three major minerals: olivine, pyroxene, and plagioclase. In the absence of secondary mineral precipitation and contributions from the dissolution of glass and minor minerals, the release rate of the ith element from crystalline basalt ($r_{i,j}$) can be approximated by

$$r_{i,j} = \sum_{k=0}^{N} \frac{A_{i,k}}{A_{j}} v_{j,k} r_{j,k}$$

where $r_{j,k}$ refers to the dissolution rate of the kth mineral (plag, ol, py) normalized to the jth surface area, $v_{j,k}$ designates the stoichiometric number of the ith element in the kth mineral, $A_{i,k}$ symbolizes the jth specific surface area of the kth mineral and A_{j} is the overall surface area. Eq. (6) was used in the present study to model measured steady-state element release rates from crystalline basalt by adopting the 25 °C dissolution rates as a function of pH of olivine reported by Pokrovsky and Schott (2000b), those of diopside reported by Knauss et al. (1993), to correspond to that of augite, and those of plagioclase taken from Fig. 1. Stoichiometric coefficients in Eq. (6) were taken from the mineral compositions listed in Table 2. To the first approximation, it seems reasonable to assume that the relative surface area of the three minerals comprising the crystalline basalt is proportional to the relative volume percent of each mineral in the dissolving basalt (e.g. 17%, 39%, and 44% for ol, py, and plag, respectively). The results of this calculation are plotted as curves and compared with measured element release rates in Fig. 8a, c, and e. Although these calculations exhibit the correct rate trends with pH, calculated steady-state release rates are approximately one order of magnitude faster than (a) measured Si release rates at acid to neutral pH, (b) measured Mg and Fe release rates at all pH, and (c) measured Ca release rates at intermediate pH. It should be noted that the uncertainties in the rates adopted to perform this calculation are significant and include such factors as variable mineral compositions and the affect of reactive fluid composition other than pH on rates. Differences between measured and computed rates such as observed in Fig. 8a, c, and e, are therefore, likely within the margin of error in the calculations. It seems unlikely that the difference between the curves and data points in Fig. 8 stem from contributions from the dissolution of minor phases (e.g. interstitial glass) as measured rates are slower than those computed using Eq. (6).

An improved fit of measured element release rates was obtained by adjusting the relative surface areas of the minerals to 2.8% olivine, 13.9% pyroxene, and 83.3% plagioclase. The results of this fit are compared to measured steady-state element release rates in Fig. 8b, d, and f. This revised fit reproduces the measured element release rates within 0.5 log units at all pH. There are several reasons why the relative surface area of the minerals of the best data fit do not match the relative volume fraction of the minerals. First, pyroxene may be close to equilibrium (see the calculated saturation state of various minerals at steady-state in Annex A); rates slow as fluids approach equilibrium with respect to dissolving mineral phases (cf. Schott and Oelkers, 1995). Secondly, the grinding of the crystalline basalt may have created reactive surfaces in a heterogeneous way among the mineral phases. This may lead to a higher relative surface area for plagioclase, which is commonly comprised of fine-grained exsolution lamellae.

Apparent activation energies of Si release from crystalline basalt dissolution calculations using Eq. (4b) and the rates listed in Table 4 are near to 30 kJ/mol at pH 4 but increase to 54 kJ/mol at pH 3 (see Table 5). These values are close to the activation energies reported in the literature for basaltic glass; Gislason and Oelkers (2003) reported an activation energy for basaltic glass dissolution of 25.5 kJ/mol and Wolff-Boenisch et al. (2004a) reported activation energies of 27 kJ/mol at pH 4 and 41 kJ/mol at pH 10.6.

6. CONCLUSIONS

The results described above illustrate the contrasting behaviour of crystalline basalt versus basaltic glass. Although steady-state $r_{Si,BET}$ of crystalline basalts and basalt-
tic glass exhibit similar pH dependencies the release rates of the divalent metal cations differ significantly. Because of the distinct dissolution behaviour of its constituent minerals, Mg and Fe are preferentially removed from crystalline basalt at acid conditions, whereas Ca is preferentially removed at basic conditions. These observations suggest contrasting alteration behaviours of glassy versus crystalline basalt both during carbon sequestration and natural processes.

Element release rates estimated from the sum volume fraction normalized dissolution rates of plagioclase, pyroxene, and olivine are within one order of magnitude of those measured in this study and reproduce the distinct behaviour of the major elements. The degree to which this is an acceptable approximation of the dissolution behaviour of a crystalline rock most certainly depends on the system and the required accuracy. The critical parameter of such estimates, \(\frac{\Delta V}{\Delta t} \), the relative reactive surface area of each mineral that is in contact with the reactive fluid, is impossible to predict a priori at present. Thus, although element release rate estimates based on the assumption that reactive surface area of individual minerals is proportional to its volume fraction in a rock can only present a crude approximation, it may provide some insight into dissolution behaviour of multi-phase rocks.

ACKNOWLEDGMENTS

The authors thank our friends and colleagues, including Helgi A. Alfredsson, Gabrielle J. Stockmann, Alexander P. Gysi, Iwona Aj, the relative reactive surface area of each mineral that is in contact with the reactive fluid, is impossible to predict a priori at present. Thus, although element release rate estimates based on the assumption that reactive surface area of individual minerals is proportional to its volume fraction in a rock can only present a crude approximation, it may provide some insight into dissolution behaviour of multi-phase rocks.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.gca.2011.06.035.

REFERENCES

Parkhurst D. L. and Appelo C. A. J. (1999) User’s guide to phreeqc (version 2) – a computer program for speciation, batch-

Associate editor: Dimitri A. Sverjensky