

High pressure and temperature grouts

GEORG – General Assembly Meeting 21-05-2010

Partners:

- Mannvit Engineering
- Reykjavik University
- Innovation Center Iceland
- •Icelandic GeoSurvey

Work plan – duration one year – 5 tasks:

- 1. Improved mix-design, material selection and testing of grout
- 2. Assessment of temperature and pressure conditions in boreholes
- 3. Testing of behavior of selected mixes at high pressure
- 4. Full –scale testing of selected mixes
- 5. Final report

Improved mix design, ... Performed at 1 bar and 25 °C

Cements tested:

Icelandic Portland, Rapid Danish Portland, Blast furnace slag cement (Irish/Chinese), Dyckerhoff well cement, Norcem well cement, Danish White cement

Solid additives: Fly ash, silica flour, bentonite, perlite

Admixtures: Water reducing agents, retarders, plasticizers, viscosity modifying agents

Common mixture in Iceland (kg/m³):

Cement (OPC):	717
Silica flour:	287
Bentonite:	17.9
Perlite:	14.3
Water:	575

Mixture used in IDDP in Krafla 2008/2009

Cement (Dyckerhoff): 801 Silica flour: 534

Bentonite:

Perlite:

Water: 506

Example of mixture from this work (kg/m³):

Cement (Norcem G):	757
Silica flour:	418
Bentonite:	18.9
Perlite:	15.1
Water:	560

Improved mix design, ... Work done by Mannvit, testing program:

Density, flowability, flow stability, setting time, adiabatic heat development, bleeding, thermal expansion, compressive strength (1, 2, 7 and 28 days).

Improved mix design, ... Work done by Mannvit, examples from testing **Retarders with Icelandic cement**

Heat development - Q [kJ/kg binder] Model - no retarder 400 Model-1.5 kg/m3 Model-3 kg/m3 300 200 100 0 1 10 100 1000

Adiabatic heat development

Equivalent time - M20 [hrs.]

Retarder dosage	Setting time
(kg/m³)	(hrs)
0	23
1.5	30
3.0	40

Work done by Mannvit, examples from testing Compressive strength development

Work done by Mannvit, examples from testing Compressive strength development

> Difficult if not impossible to measure compressive strength of immature (young) grout, must rely on calculated values. The results of this will be used in Task 2.

Work done by Mannvit, examples from testing Flowability of grout 2 series – OPC Icelandic

No water reducer no plasticizer

High dosage of water reducerLow dosage of water reducerno plasticizerno plasticizer

Work done by Mannvit, examples from testing Flowability of grout

3 series – rapid Danish cement with fly ash

Medium dosage of plasticizer – no stabilizer

Low dosage of plasticizer – high dosage of stabilizer High dosage of plasticizer – low dosage of stabilizer

Improved mix design, ... Work done by ICI, examples from testing Yield value of different binders

Figure 1: Yield value of six different binders at a w/c-ratio of 0,80

High P and T grouts - 21-05-2010

Improved mix design, ... Work done by ICI, examples from testing Plastic viscosity of different binders

Figure 2: Plastic viscosity of six different binders at a w/c-ratio of 0,80

High P and T grouts - 21-05-2010

Assessment of T and P conditions in wells Work done by Mannvit and ISOR, testing just underway:

Computer simulations on early age strength development in wells Attempt to use a computer program HACON³

Measure strength development of well grouts at temperatures < 100 °C

Collect data from well, mainly temperature in wells before and after concreting

Computer simulation, compressive strength

A simple example to show compressive strength development of "well grout" in a "well" with 130 °C hot bed rock

Compressive strength development at 20, 40 and 80 °C, data from IBRI

Testing of behavior of selected mixes at high pressure

Work done by ICI, testing just underway

•Rheo-microscope - Physica MCR 101 •P and T rheometer - the Modular Rheometer Series

Producer: Anton Paar Germany GmbH - Helmuth-Hirth-Str. 6, D-73760 Ostfildern, Germany-Europe

Applications

•Applies to "ordinary" grouts rheological properties best described as a Bingham fluid $(\tau = \tau_0 + \mu \dot{\gamma})$ reduce wait on cement reduce/eliminate bleeding

•High P and T grouts (at about 3.5 km depth: 220-250 bar and 450- 500 °C) improve knowledge on high P and T grouts suggest mixture and dosages for high P and T grouts much more effect of T than P on rheological properties of grouts rheological properties still as a Bingham fluid

Casings in IDDP-1

Schematic explanation of damaged to casings due to expansion of vapor

- 1. Casing and concreting
- 2. Casing and concreting
- 3. Casing and concreting
- 4. Loss of grout into cracks
- 5. Bleeding water from grout
- 6. Concreting and sealing in a water pocket
- 7. Damaging of casing due to vapor expansion

Conclusions

Work underway, 1 bar and 25 °C work finished We believe that we can improve the stability of ordinary grout Possibly reduce wait on cement

Work at high P and T just started