Resistivity survey of Grímsvötn

Arnar Már Vilhjálmsson

Iceland GeoSurvey

GEORG - General Assembly
May 21, 2010
Overview

1. Introduction
2. Existing data
3. Resistivity
4. Method
5. Summary
The study area - Grímsvötn

- High temperature geothermal field
- The most active volcano in Iceland
- Located within Vatnajökull glacier
- Covered with 300 – 600 m thick ice
- Overlying ice acts as calorimeter
- Thermal output 2000 – 4000 MW
The study area - Grímsvötn
Main objectives of the project

- To map the spatial extend and depth span of resistivity anomalies within the Grímsvötn geothermal system
 - Calorimeter exists for Grímsvötn allowing comparison with other high-temperature geothermal systems

- To map the location and extent of magma bodies in the uppermost 3 – 5 km of the crust under the volcano

- To assess the thermal release from a pristine geothermal system for comparison with other geothermal systems under full exploitation
Main objectives of the project

- To map the spatial extend and depth span of resistivity anomalies within the Grímsvötn geothermal system
 - Calorimeter exists for Grímsvötn allowing comparison with other high-temperature geothermal systems
- To map the location and extent of magma bodies in the uppermost 3 – 5 km of the crust under the volcano
- To assess the thermal release from a pristine geothermal system for comparison with other geothermal systems under full exploitation
Main objectives of the project

- To map the spatial extend and depth span of resistivity anomalies within the Grímsvötn geothermal system
 - Calorimeter exists for Grímsvötn allowing comparison with other high-temperature geothermal systems

- To map the location and extent of magma bodies in the uppermost 3 – 5 km of the crust under the volcano

- To assess the thermal release from a pristine geothermal system for comparison with other geothermal systems under full exploitation
Gravity and magnetic data
p-wave velocities
Alteration vs. resistivity

Resistivity Structure summarised

- **ALTERATION**
 - Saline water
 - Fresh water

- **RESISTIVITY**
 - 50-100°C
 - 230-250°C
 - 250-300°C

- **TEMPERATURE**
 - Boiling curve
 - Amb. temp

- **Method**
 - Pore fluid conduction
 - Mineral conduction
 - Surface and pore fluid conduction

- **Summary**
 - Rel. unaltered
 - Smectite-zeolite zone
 - Mixed layer clay zone
 - Chlorite zone
 - Chlorite-epidote zone
Example from Nesjavellir
Grímsvötn - Simple model
Grímsvötn - Simple model
Data collection

- Two 3 weeks long resistivity surveys using LOTEM-method
 - 2×2 km source loop
 - $10 - 15$ A square wave
 - TEM and MT equipment measures H_x, H_y and H_z
- ~ 300 sounding sites
- $3 - 4$ source loop locations
3D inversion - Conceptual model

- Signal processing and inversion
 - 3D resistivity model

Joint interpretation of resulting 3D resistivity model with other existing geophysical data
3D inversion - Conceptual model

- Signal processing and inversion
 - 3D resistivity model

- Joint interpretation of resulting 3D resistivity model with other existing geophysical data
Motivation
- Grímsvötn is amongst the most powerful high temperature geothermal areas in the world
- Resistivity structure of geothermal systems are very distinctive
- Resistivity survey has not been carried out in Grímsvötn

Expected outcome
- Deep insight into the Grímsvötn geothermal system
- Better understanding of geothermal systems in general
 - Study the interplay of volcanism and geothermal systems
 - How do volcanoes transfer heat, and how much, to the surface
- Initiate the use of LOTEM in Iceland
Introduction

Motivation
- Grímsvötn is amongst the most powerful high temperature geothermal areas in the world
- Resistivity structure of geothermal systems are very distinctive
- Resistivity survey has not been carried out in Grímsvötn

Expected outcome
- Deep insight into the Grímsvötn geothermal system
- Better understanding of geothermal systems in general
 - Study the interplay of volcanism and geothermal systems
 - How do volcanoes transfer heat, and how much, to the surface
- Initiate the use of LOTEM in Iceland