Resistivity survey of Grímsvötn

Arnar Már Vilhjálmsson

Iceland GeoSurvey

GEORG - General Assembly May 21, 2010

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Introduction	Existing data	Resistivity	Method	Summary
000	00	000	00	O
Overview				

Introduction	Existing data	Resistivity	Method	Summary
●00		000	00	O
The study are	a - Grímsvötn			

- High temperature geothermal field
- The most active volcano in Iceland
- Located within Vatnajökull glacier
- $\bullet\,$ Covered with 300 $-\,$ 600 m thick ice
- Overlying ice acts as calorimeter
- Thermal output 2000 4000 MW

Introduction	Existing data	Resistivity	Method	Summary
○●○		000	00	O
The study	area - Grímsvö	tn		

- To map the spatial extend and depth span of resistivity anomalies within the Grímsvötn geothermal system
 - Calorimeter exists for Grímsvötn allowing comparison with other high-temperature geothermal systems
- To map the location and extent of magma bodies in the uppermost 3 5 km of the crust under the volcano
- To assess the thermal release from a pristine geothermal system for comparison with other geothermal systems under full exploitation

- To map the spatial extend and depth span of resistivity anomalies within the Grímsvötn geothermal system
 - Calorimeter exists for Grímsvötn allowing comparison with other high-temperature geothermal systems
- To map the location and extent of magma bodies in the uppermost $3-5~{\rm km}$ of the crust under the volcano
- To assess the thermal release from a pristine geothermal system for comparison with other geothermal systems under full exploitation

- To map the spatial extend and depth span of resistivity anomalies within the Grímsvötn geothermal system
 - Calorimeter exists for Grímsvötn allowing comparison with other high-temperature geothermal systems
- To map the location and extent of magma bodies in the uppermost $3-5~{\rm km}$ of the crust under the volcano
- To assess the thermal release from a pristine geothermal system for comparison with other geothermal systems under full exploitation

ション ふゆ く 山 マ チャット しょうくしゃ

Introduction	Existing data	Resistivity	Resistivity Method	Summary
	•0			
<u> </u>				

Gravity and magnetic data

GEORG

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

Introduction	Existing data	Resistivity	Method	Summary
000	○●	000	00	O
p-wave vel	ocities			

Introduction	Existing data	Resistivity	Method	Summary
000		●00	00	O
Alteration vs.	resistivity			

Introduction	Existing data	Resistivity	Method	Summary
000	00	0●0	00	0
Example from	Nesiavellir			

Introduction	Existing data	Resistivity	Method	Summary
000	00	00●	00	0
Grímsvötn - S	imple model			

GE

Introduction	Existing data	Resistivity	Method	Summary
000	00	○○●	00	0
Grímsvötn - S	imple model			

GEWRG

Introduction	Existing data	Resistivity	Method	Summary
000	00	000	●○	O
Data collectio	n			

- Two 3 weeks long resistivity surveys using LOTEM-method
 - 2×2 km source loop
 - 10 15 A square wave
 - TEM and MT equipment measures H_x , H_y and H_z
- $\bullet~\sim$ 300 sounding sites
- 3-4 source loop locations

Introduction	Existing data	Resistivity	Method	Summary
000	00	000	○●	O
3D inversion -	Conceptual m	odel		

• Signal processing and inversion

• 3D resistivity model

 Joint interpretation of resulting 3D resistivity model with other existing geophysical data

- Signal processing and inversion
 - 3D resistivity model

• Joint interpretation of resulting 3D resistivity model with other existing geophysical data

Introduction	Existing data	Resistivity	Method	Summary
000		000	00	●
Summary				

Motivation

- Grímsvötn is amongst the most powerful high temperature geothermal areas in the world
- Resistivity structure of geothermal systems are very distinctive
- Resistivity survey has not been carried out in Grímsvötn

Expected outcome

- Deep insight into the Grímsvötn geothermal system
- Better understanding of geothermal systems in general
 - Study the interplay of volcanism and geothermal systems
 - How do volcanoes transfer heat, and how much, to the surface
- Initiate the use of LOTEM in Iceland

Introduction	Existing data	Resistivity	Method	Summary
000		000	00	●
Summary				

Motivation

- Grímsvötn is amongst the most powerful high temperature geothermal areas in the world
- Resistivity structure of geothermal systems are very distinctive
- Resistivity survey has not been carried out in Grímsvötn

Expected outcome

- Deep insight into the Grímsvötn geothermal system
- Better understanding of geothermal systems in general
 - Study the interplay of volcanism and geothermal systems
 - How do volcanoes transfer heat, and how much, to the surface
- Initiate the use of LOTEM in Iceland